Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

The Automated Shift Transmission (AST) - Possibilities and Limits in Production-Type Vehicles

2001-03-05
2001-01-0881
State-of-the-art powertrain concepts with automatic transmission must comply with increasingly stringent legislation on emissions and fuel consumption while fulfilling or surpassing customers' expectations as to driveability. In this respect, automated manual transmissions (AMT) and automated shift transmissions (AST) must compete with conventional automatic transmissions (AT) and continuously variable transmissions (CVT). In order to exploit the theoretical advantages of ASTs and put them into practice, complex ECU functions are needed to coordinate engine and transmission. Adaptive control, sophisticated clutch management and an intelligent shifting strategy allow shifting quality and shifting points to be simultaneously optimized to the effect that performance and comfort are increased while fuel consumption is reduced.
Technical Paper

Software Quality is Not a Coincidence: A Model-Based Test Case Generator

2005-04-11
2005-01-1664
IAV GmbH is currently developing a test case generator, which uses information from Simulink®/Stateflow® models to generate test cases automatically. These test cases can then be applied during software tests for an ECU to show conformance to the original model. Using predefined rules, test cases for individual blocks are generated and converted into test cases for a whole model. The test cases can be saved as a XML file. Then, this file can be converted into test script languages which are used by tools for test execution. With the test case generator, the time-consuming and error-prone task of manual test case definition can be automated, thus decreasing test expenses for each test while increasing test quality.
Technical Paper

Potential of an Innovative, Fully Variable Valvetrain

2004-03-08
2004-01-1393
Under the persistent pressure to further reduce fuel consumption worldwide, it is necessary to advance the processes that influence the efficiency of gasoline engines. In doing so, harnessing the entire potential of fully variable mechanical valve trains will involve targeting efforts on optimizing all design parameters. A new type of valve timing system is used to portray thermodynamic and mechanical as well as electronic aspects of developing fully variable mechanical valve timing and lift systems
Technical Paper

Physical Modeling of Automotive Turbocharger Compressor: Analytical Approach and Validation

2011-09-13
2011-01-2214
Global warming is a climate phenomenon with world-wide ecological, economic and social impact which calls for strong measures in reducing automotive fuel consumption and thus CO2 emissions. In this regard, turbocharging and the associated designing of the air path of the engine are key technologies in elaborating more efficient and downsized engines. Engine performance simulation or development, parameterization and testing of model-based air path control strategies require adequate performance maps characterizing the working behavior of turbochargers. The working behavior is typically identified on test rig which is expensive in terms of costs and time required. Hence, the objective of the research project “virtual Exhaust Gas Turbocharger” (vEGTC) is an alternative approach which considers a physical modeled vEGTC to allow a founded prediction of efficiency, pressure rise as well as pressure losses of an arbitrary turbocharger with known geometry.
Technical Paper

NVH Optimization of Driveline with Mathematical Optimization Methods

2013-01-09
2013-26-0089
The Noise, Vibration and Harshness (NVH) behaviour of the powertrain, the driveline and the mounting is playing a very important role in the vehicle development process. The method described in this paper presents the coupling of Multi Body Simulation (MBS) with mathematical optimization tools exemplary for a powertrain mounting at a passenger car vehicle. It is shown, how this approach is integrated in the IAV - development process for validation and for optimization, i.e. finding the best solution for reaching the NVH targets. In early stage of development process, torsional vibration models are used to simulate e.g. the decoupling between engine and transmission. To simulate further physical effects, the models must be more and more detailed with a lot of additional parameter. One challenge for valid models is the parameter identification. The process to do this successfully with mathematical methods will be described.
Technical Paper

Modeling and Identification of a Gasoline Common Rail Injection System

2014-04-01
2014-01-0196
The precision of direct fuel injection systems of combustion engines is crucial for the further reduction of emissions and fuel consumption. It is influenced by the dynamic behavior of the fuel system, in particular the injection valves and the common rail pressure. As model based control strategies for the fuel system could substantially improve the dynamic behavior, an accurate model of the common rail injection system for gasoline engines - consisting of the main components high-pressure pump, common rail and injection valves - that could be used for control design is highly desirable. Approaches for developing such a model are presented in this paper. For each key component, two models are derived, which differ in temporal resolution and number of degrees of freedom. Experimental data is used to validate and compare the models. The data was generated on a test bench specifically designed and built for this purpose.
Technical Paper

Modeling Heavy-Duty Engine Thermal Management Technologies to Meet Future Cold Start Requirements

2019-04-02
2019-01-0731
The low-NOx standard for heavy-duty trucks proposed by the California Air Resources Board will require rapid warm-up of the aftertreatment system. Several different engine technologies are being considered to meet this need. In this study, a 1-D engine model was first used to evaluate several individual control strategies capable of increasing the exhaust enthalpy and decreasing the engine-out NOX over the initial portion of the cold start FTP cycle. The additional fuel consumption resulting from these strategies was also quantified with the model. Next, several of those strategies were combined to create a hypothetical aftertreatment warm-up mode for the engine. The model was then used to evaluate potential benefits of an air gap manifold (AGM) and two different turbine by-pass architectures. The detailed geometry of the AGM model was taken into account, having been constructed from a real prototype design.
Technical Paper

Model-Based Energy Consumption Optimization of a Twin Battery Concept Combining Liquid and Solid-State Electrolyte Cells

2023-08-28
2023-24-0154
The majority of powertrain types considered important contributors to achieving the CO2 targets in the transportation sector employ a battery as an energy storage device. The need for batteries is hence expected to grow drastically with increasing market share of CO2-optimized powertrain concepts. The resulting huge pressure on the development of future electrochemical energy storage systems necessitates the application of advanced methodologies enabling a fast and cost-efficient concept definition and optimization process. This paper presents a model-based methodology for the optimization of BEV thermal management concept layouts and operation strategies targeting minimized energy consumption. Starting at the vehicle level, the proposed methodology combines appropriate representations of all primary powertrain components with 1D cooling and refrigerant circuit models and focuses on their interaction with the battery chemistry.
Technical Paper

Model-Based Assessment of Hybrid Powertrain Solutions

2011-09-11
2011-24-0070
This paper shows the main results of a research activity carried out in order to investigate the impact of different hybridization concepts on vehicle fuel economy during standard homologation cycles (NEDC, FTP75, US Highway, Artemis). Comparative analysis between a standard passenger vehicle and three different hybrid solutions based on the same vehicle platform is presented. The following parallel hybrid powertrain solutions were investigated: Hybrid Electric Vehicle (HEV) solution (three different levels of hybridization are investigated with respect to different Electric Motor Generator size and battery storage/power capacity), High Speed Flywheel (HSF) system described as a fully integrated mechanical (kinetic) hybrid solution based on the quite innovative approach, and hydraulic hybrid system (HHV). In order to perform a fare analysis between different hybrid systems, analysis is also carried out for equal system storage capacities.
Technical Paper

Model Based Exhaust Aftertreatment System Integration for the Development and Calibration of Ultra-Low Emission Concepts

2014-04-01
2014-01-1554
The development and calibration of exhaust aftertreatment (EAT) systems for the most diverse applications of diesel powertrain concepts requires EAT models, capable of performing concept analysis as well as control and OBD system development and calibration. On the concept side, the choice of an application-specific EAT layout from a wide technology selection is driven by a number of requirements and constraints. These include statutory requirements regarding emissions of criteria pollutants and greenhouse gases (GHG), technical constraints such as engine-out emissions and packaging, as well as economic parameters such as fuel consumption, and EAT system and system development costs. Fast and efficient execution of the analysis and multi-criteria system optimization can be done by integrating the detailed EAT models into a total system simulation.
Journal Article

Model Based E85 Cold Start Optimization for DISI Engines

2009-06-15
2009-01-1909
The startability of SI engines, especially of DISI engines, is the greatest challenge when using ethanol blended fuels. The development of a suitable injection strategy is therefore the main engineering target when developing an ethanol engine with direct injection. In order to limit the test efforts of such a program, a vaporization model has been created that provides the quantity of vaporized fuel depending on pressure and on start and end, respectively number and split relation of injections. This model takes account of the most relevant fuel properties such as density, surface tension and viscosity. It also considers the interaction of the spray with cylinder liner, cylinder head and piston. A comparison with test results shows the current status and the need for action of this simulation model.
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
Journal Article

Low-Temperature NOx Reduction by H2 in Diesel Engine Exhaust

2022-03-29
2022-01-0538
For the NOx removal from diesel exhaust, the selective catalytic reduction (SCR) and lean NOx traps are established technologies. However, these procedures lack efficiency below 200 °C, which is of importance for city driving and cold start phases. Thus, the present paper deals with the development of a novel low-temperature deNOx strategy implying the catalytic NOx reduction by hydrogen. For the investigations, a highly active H2-deNOx catalyst, originally engineered for lean H2 combustion engines, was employed. This Pt-based catalyst reached peak NOx conversion of 95 % in synthetic diesel exhaust with N2 selectivities up to 80 %. Additionally, driving cycle tests on a diesel engine test bench were also performed to evaluate the H2-deNOx performance under practical conditions. For this purpose, a diesel oxidation catalyst, a diesel particulate filter and a H2 injection nozzle with mixing unit were placed upstream to the full size H2-deNOx catalyst.
Technical Paper

Investigations on the Potential of a Variable Miller Cycle for SI Knock Control

2013-04-08
2013-01-1122
A promising combustion technology for DISI downsizing engines is the Miller cycle. It is based on an early intake valve closing for the separation of effective and geometric compression ratio. Therefore IAV has prepared a turbocharged DISI test engine with a high geometric compression ratio. This engine is equipped with the Schaeffler “UniAir” variable valve train in order to investigate a variable Miller cycle valve timing in the turbocharged map area. The goal is to investigate whether and how a rapidly variable Miller cycle can influence the knocking behavior. Therefore its potential for a SI knock control can be evaluated. The investigated parameters in a steady-state engine dyno mode were the intake valve closing timing, the intake camshaft phasing and the ignition timing. A variable intake valve closing Miller cycle strategy, a variable intake camshaft phasing Miller cycle strategy and a state-of-the- art ignition timing strategy have been investigated.
Technical Paper

Investigations on Ventilation Strategies for SI Cylinder Deactivation Based on a Variable Valve Train

2016-10-17
2016-01-2346
Advanced SI engines for passenger cars often use the cylinder deactivation technology for dethrottling and thus achieving a reduction of fuel consumption. The gas exchange valves of the deactivated cylinders are closed permanently by a zero lift of the cams. The solutions for cylinder deactivation can vary in the kind of gas composition included in the deactivated cylinders: charge air, exhaust gas or vacuum. All these strategies have in common the frequent loss of captured charge mass from cycle to cycle. Their two-stroke compression-expansion cycle additionally intensifies this phenomenon. Thus, a significant decrease of the minimum cylinder pressure can cause an undesired entry of lubricant into the combustion chamber. The idea was to ventilate the generally deactivated cylinders frequently to compensate the loss of captured cylinder charge mass. The task was to keep the minimum cylinder pressure above a certain limit to prevent the piston rings from a failure.
Journal Article

Influence of Innovative Diesel-Ethanol Blend on Combustion, Emission and Fuel-Carrying Components

2013-10-14
2013-01-2696
The strong demand for diesel fuel is producing a surplus of gasoline fractions in Europe. Despite new vehicles using less energy, the rising volume of traffic will lead to more diesel being consumed. European legislation demands that renewable fuels cover 10% of energy consumed in the transport sector. The present strategy of dividing biofuels in equal shares between diesel and gasoline does not help to improve this situation. It seems reasonable not only to add FAME but also ethanol to diesel. Unfortunately, fuel blends containing ethanol cannot be used in existing cars without hardware modifications. This is because of ethanol's characteristics and well-known from the experience gathered with gasoline cars. As such, the first part of this study investigates material compatibility, focusing on corrosion and changes to the mechanical properties of the materials used in diesel engines.
Technical Paper

In-cylinder Flow Field Measurement with Doppler Global Velocimetry in Combination with Droplet Distribution Visualization by Mie Scattering

2009-04-20
2009-01-0652
Flow fields and fuel distribution play a critical role in developing the combustion process inside the cylinders of piston engines. This has prompted the development of measurement and diagnostic capabilities including laser techniques like Doppler Global Velocimetry (DGV). The paper provides an overview of the basics of DGV and the type of results that can be obtained. It also includes a short comparison to Particle Image Velocimetry (PIV) which is a popular alternative method. Furthermore, it is shown that DGV can be used simultaneously in combination with droplet distribution visualization inside cylinders based on Mie scattering.
Technical Paper

Holistic Evaluation of CO2 Saving Potentials for New Degrees of Freedom in SI Engine Process Control Based on Physical Simulations

2018-09-10
2018-01-1654
Specific shifting of load points is an important approach in order to reduce the fuel consumption of gasoline engines. A potential measure is cylinder deactivation, which is used as a study example. Currently CO2 savings of new concepts are evaluated by dynamic cycles simulations. The fuel consumption during driving cycles is calculated based on consumption-optimized steady-state engine maps. Discrete load point shifts occur as shifts within maps. For reasons of comfort shifts require neutral torque. The work of deactivated cylinders must be compensated by active cylinders within one working cycle. Due to the larger time constant of the air path the air charge must be increased or decreased in order to deactivate or activate cylinders without affecting the torque. A working-cycle-resolved, continuously variable parameter is prerequisite for process control. Manipulation of ignition timing enables a reduction of efficiency and gained work.
Journal Article

Holistic Engine and EAT Development of Low NOX and CO2 Concepts for HD Diesel Engine Applications

2020-09-15
2020-01-2092
The latest legislative tendencies for on-highway heavy duty vehicles in the United States such as the feasibility assessment of low NOX standards of CARB or EPA’s memorandum forecast further tightening of the NOX emissions limits. In addition, the GHG Phase 2 legislation and also phased-in regulations in the EU enforce a continuous reduction in CO2 emissions resp. fuel consumption. In order to meet such low NOX emission limits, a rapid heat-up of the exhaust after-treatment system (EATS) is inevitable. However, the required thermal management results in increased fuel consumption, i.e. CO2 emissions as shown in numerous previous works also by the authors. A NOX-CO2 trade-off for cumulative cycle emissions can be observed, which can be optimized by using more advance technologies on the engine and/or on the EATS side.
X