Refine Your Search

Topic

Search Results

Technical Paper

Well to Wheels Analysis of Biofuels vs. Conventional Fossil Fuels : a Proposal for Greenhouse Gases and Energy Savings Accounting in the French Context

2008-04-14
2008-01-0673
The recent development of biofuel production worldwide is closely linked to GHG savings objectives and to regional agricultural policies. Many existing studies intend to evaluate the net non renewable energy and GHG savings associated to the various biofuel production pathways. However, there is no consensus on the results of those studies. The main explanations of variations among the results are the following: energy consumption and GHG emissions of the reference fossil pathway, data used for the representation of farming processes and biofuel production processes, accounting for carbon storage in agricultural soils, reference use of the land, choice of an allocation method in case of coproduction. There is a strong drive in the European Union for a certification on the sustainability of biofuel pathways.
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Technical Paper

Tracer LIF Visualisation Studies of Piston-Top Fuel Films in a Wall-Guided, Low-NOx Diesel Engine

2008-10-06
2008-01-2474
Tracer laser induced fluorescence (LIF) imaging of piston-top fuel films has been performed within the combustion chamber of an optically-accessible, single cylinder Diesel engine. The first objective of the study was to adapt the tracer LIF technique so as to perform in-cylinder imaging of the fuel films under reacting (i.e. combustion) conditions. The results obtained in a wall-guided, combustion chamber operating under highly dilute, Diesel low temperature combustion (LTC) conditions reveal the significant presence of late-cycle piston-top fuel films. Furthermore, it is believed that these fuel films contribute to engine-out hydrocarbon (HC) emissions via a mechanism of flash boiling. An attempt was also made to evaluate the role of fuel volatility on fuel film lifetimes. This was achieved by using a 50/50 fuel mixture of two single component fuels whose boiling points correspond to moderately high and low volatility components of standard Diesel fuel.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

Sulfated and Desulfated Lean NOx-trap Characterization for Optimized Management Strategy in Gasoline Applications

2006-04-03
2006-01-1068
Within the framework of the French research program PREDIT, a study was undertaken by ADEME, IFP, LGRE, PSA Peugeot Citroën and Umicore, whose main objective was a better understanding of the NOx storage and reduction phenomena on an aged, sulfated and desulfated NOx-trap. The target of this work was to use the information on catalyst working conditions to optimize catalyst management for a gasoline direct injection engine. The catalysts were characterized on both engine and synthetic gas benches. Aging and poisoning phenomena were studied and a variety of different chemical analytical tools were used. The behavior of two different thermally aged cores was investigated under rich conditions on a synthetic gas test bench. The dependence of the NOx regeneration efficiency of the traps is reported for several operating parameters, including reductant concentrations, durations of the rich pulse and trap loadings.
Technical Paper

Strategies for the Control of Particulate Trap Regeneration

2000-03-06
2000-01-0472
The reduction of particulate emissions from Diesel engines is a key issue to meet future emission standards. Particulate traps represent an attractive solution to the problem of this source of pollution. However, they have the disadvantage of requiring periodic and safe regeneration to release exhaust back pressure and to recover filtration efficiency. Natural regeneration of the particulate filter may occur. Nevertheless, with light-duty vehicles and their low level of exhaust gas temperature, it may be necessary to facilitate or force the regeneration. The objective of this work is to give an overview of the possibilities offered by the engine management system to increase significantly exhaust gas temperatures. Thus, different engine tunes, through injection timing, boost pressure or EGR rate, may be sufficient to ensure safe regeneration of the trap.
Technical Paper

Six Degrees Crankshaft Individual Air Fuel Ratio Estimation of Diesel Engines for Cylinder Balancing Purpose

2006-04-03
2006-01-0013
In the context of modern engine control, one important variable is the individual Air Fuel Ratio (AFR) which is a good representation of the produced torque. It results from various inputs such as injected quantities, boost pressure, and the exhaust gas recirculation (EGR) rate. Further, for forthcoming HCCI engines and regeneration filters (Particulate filters, DeNOx), even slight AFR unbalance between the cylinders can have dramatic consequences and induce important noise, possible stall and higher emissions. Classically, in Spark Ignition engine, overall AFR is directly controlled with the injection system. In this approach, all cylinders share the same closed-loop input signal based on the single λ-sensor (normalized Fuel-Air Ratio measurement, it can be rewritten with AFR as they have the same injection set-point.
Technical Paper

Simulation of Urea-SCR Process Applied to Lean-burn SI Engines

2009-11-02
2009-01-2776
Lean-burn combustion in SI engines can significantly reduce fuel consumption but NOx reduction becomes challenging because classic three-way catalyst (TWC) is no more efficient. Urea-SCR is then an interesting alternative solution because of its high NOx conversion efficiency without any additional fuel consumption. The coupling between two SI lean-burn engines (stratified and homogeneous combustion) and a urea-SCR catalyst was simulated on the NEDC cycle. Simulation results showed that the SCR efficiency would comply with the limits required by future Euro 5/6 regulations. Associated urea solution consumptions were estimated thanks to a simplified model. Finally, a comparison with a Diesel application was also made. It showed that the required amount of reducing agent remained significantly higher for SI lean-burn engines than for Diesel engine.
Journal Article

Reduction of the Compression Ratio on a HSDI Diesel Engine: Combustion Design Evolution for Compliance the Future Emission Standards

2008-04-14
2008-01-0839
Environment protection issues regarding CO2 emissions as well as customers requirements for fun-to-drive and fuel economy explain the strong increase of Diesel engine on European market share in all passenger car segments. To comply future purposes of emission regulations, particularly dramatic decrease in NOx emissions, technology need to keep upgrading; the reduction of the volumetric compression ratio (VCR) is one of the most promising research ways to allow a simultaneous increase in power at full load and NOx / PM trade-off improvement at part load. This study describes the combustion effects of the reduction of compression ratio and quantifies improvements obtained at full load and part load running conditions on a HSDI Common Rail engine out performance (power, fuel consumption, emissions and noise). Potential and limitations of a reduced compression ratio from 18:1 to 14:1 are underlined.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Present Day Diesel Engine Pollutant Emissions: Proposed Model for Refinery Bases Impact

2000-06-19
2000-01-1852
Air quality improvement, especially in urban areas, is one of the major concerns for the coming years. For this reason, car manufacturers, equipment manufacturers and refiners have been exploring development avenues to comply with increasingly severe anti-pollution requirements. In such a context, the identification of the most promising improvement options is essential. A research program, carried out by IFP (Institut Français du Pétrole), and supported by FSH (Fonds de Soutien aux Hydrocarbures), IFP, PSA-Peugeot-Citroën, Renault and Renault VI (Véhicules Industriels), has been built to study this point. It is a four years programme with different steps which will focus on new engine technologies: some of them are going to be marketed very soon (gasoline direct injection car engine, and diesel common rail injection car and truck engines) to anticipate the Euro 3 (2000) and the Euro 4 (2005) emissions specifications. The original work reported here is part of this research.
Technical Paper

Performances and Durability of DPF (Diesel Particulate Filter) Tested on a Fleet of Peugeot 607 Taxis: Final results

2004-03-08
2004-01-0073
In order to asses the durability of DPF, a study has been performed in order to study the evolution of several taxis (Peugeot 607) and the performance of this after-treatment systems over 80,000 km mileage in hard urban driving conditions, which corresponds to the recommended mileage before the first DPF maintenance (this periodicity is applied on the first generation of DPF technology launched in 2000). More specifically, the following evaluations are being performed at regular intervals (around 20 000 km): Regulated gaseous pollutant emissions on NEDC cycle (New European Driving Cycle) Particulate emissions, by mass measurement on NEDC but also by particle number and size measurement with SMPS (Scanning Mobility Particle Sizer) technique on NEDC and on unconventional steady-state running points.
Technical Paper

Performances and Durability of DPF (Diesel Particulate Filter) Tested on a Fleet of Peugeot 607 Taxis First and Second Test Phases Results

2002-10-21
2002-01-2790
The use of Diesel engines has strongly increased during the last years and now represents 30% of the sales in Europe and up to 50% of the number of cars in circulation for some countries. This success is linked not only to the economical aspect of the use of such vehicles, but also to the recent technological improvements of these engines. The new technical solutions (high pressure direct injection, turbocharging…) have indeed allowed the increase of these engine performances while decreasing their fuel consumption, pollutant emissions and noise level. From an environmental point of view, Diesel engines are nevertheless penalized by their particulate and NOx emissions. The study and the treatment of the particulate, highly criticized for their potential impact on health, are the subject of numerous works of characterization and developments. PSA Peugeot-Citroën has recently launched its particulate filter technology on several types of vehicles.
Journal Article

Optimization of a Euro 5 Vehicle Powered by an Ethanol Based Diesel Fuel

2010-05-05
2010-01-1520
Diversifying energy resources and reducing greenhouse gas emissions are key priorities in the forthcoming years for the automotive industry. Currently, among the different solutions, sustainable biofuels are considered as one of the most attractive answer to these issues. This paper deals with the vehicle application of an innovative diesel fuel formulation using Ethanol to tackle these future challenges. The main goal is to better understand the impact of using biofuel blends on engine behavior, reliability and pollutants emissions. This alternative oxygenated fuel reduces dramatically particulate matter (PM) emissions; this paves the way to improve the NOx/PM/CO₂ trade-off. Another major interest is to avoid adding a particulate filter in the exhaust line and to avoid modifying powertrain and vehicle hardware and therefore to minimize the overall cost to fulfill upcoming emission regulations.
Technical Paper

Optimal Design for a Highly Downsized Gasoline Engine

2009-06-15
2009-01-1794
The combination of air charging and downsizing is known to be an efficient solution to reduce CO2 emissions of modern gasoline engines. The decrease of the cubic capacity and the increase of the specific performance help to reduce the fuel consumption by limiting pumping and friction losses and even the losses of energy by heat transfer. Investigations have been conducted on a highly downsized SI engine to confirm if a strong decrease of the displacement (50 %) was still interesting regarding the fuel consumption reduction and if other ways were possible to improve further more its efficiency. The first aim of our work was to identify the optimal design (bore, stroke, displacement, …) that could maximize the consumption reduction potential at part load but also improve the engine's behaviour at very high load (up to 3.0 MPa IMEP from 1000 rpm). In order to do that, four engine configurations with different strokes and bores have been tested and compared.
Journal Article

Online Implementation of an Optimal Supervisory Control for a Parallel Hybrid Powertrain

2009-06-15
2009-01-1868
The authors present the supervisory control of a parallel hybrid powertrain, focusing on several issues related to the real-time implementation of optimal control based techniques, such as the Equivalent Consumption Minimization Strategies (ECMS). Real-time implementation is introduced as an intermediate step of a complete chain of tools aimed at investigating the supervisory control problem. These tools comprise an offline optimizer based on Pontryagin Minimum Principle (PMP), a two-layer real-time control structure, and a modular engine-in-the-loop test bench. Control results are presented for a regulatory drive cycle with the aim of illustrating the benefits of optimal control in terms of fuel economy, the role of the optimization constraints dictated by drivability requirements, and the effectiveness of the feedback rule proposed for the adaptation of the equivalence factor (Lagrange multiplier).
Technical Paper

New Knock Localization Methodology for SI Engines

2003-03-03
2003-01-1118
A methodology has been developed to determine, for every cycle on which significant knock is detected, the area in which self-ignition occurs. This methodology is based on the exploitation by a dedicated algorithm of a minimum of 4 simultaneous combustion chamber pressure measurements. The algorithm has been first tested on the results of engine knocking simulation, then applied with success on a single-cylinder engine equipped with classical pressure transducers and with an instrumented cylinder head gasket developed for this application. The results obtained with these two kinds of transducers on several engine configurations and tunings are similar. If the timing and intensity of knock events depend on all engine parameters, its location is especially sensitive to such design parameters as fluid motion into the combustion chamber and spark plug position.
Technical Paper

Modelling of a Turbocharged SI Engine with Variable Camshaft Timing for Engine Control Purposes

2006-10-16
2006-01-3264
In the whole engine development process, 0D/1D simulation has become a powerful tool, from conception to final calibration. Within the context of control strategy design, a turbocharged spark ignition (SI) engine with variable camshaft timing has been modelled on the AMESim platform. This paper presents the different models and the methodology used to design, calibrate and validate the simulator. The validated engine model is then used for engine control purposes related to downsizing concept. Indeed, the presented control strategy acts on the in-cylinder trapped mass, the in-cylinder burnt gas fraction and the air scavenging from the intake to the exhaust. Consequently, it permits to reduce not only the fuel consumption and pollutant emissions but also to improve the transient response of the turbocharger
Technical Paper

Modeling the Laminar Flame Speed of Natural Gas and Gasoline Surrogates

2010-04-12
2010-01-0546
An unified model with a single set of kinetic parameters has been proposed for modeling laminar flame velocities of several alkanes using detailed kinetic mechanisms automatically generated by the EXGAS software. The validations were based on recent data of the literature. The studied compounds are methane, ethane, propane, n-butane, n-pentane, n-heptane, iso-octane, and two mixtures for natural gas and surrogate gasoline fuel. Investigated conditions are the following: unburned gases temperature was varied from 300 to 600 K, pressures from 0.5 to 25 bar, and equivalence ratios range from 0.4 to 2. For the overall studied compounds, the agreement between measured and predicted laminar burning velocities is quite good.
X