Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance of Thin-Ceramic-Coated Combustion Chamber with Gasoline and Methanol as Fuels in a Two-Stroke SI Engine

1994-10-01
941911
The performance of a conventional, carbureted, two-stroke spark-ignition (SI) engine can be improved by providing moderate thermal insulation in the combustion chamber. This will help to improve the vaporization characteristics in particular at part load and medium loads with gasoline fuel and high-latent-heat fuels such as methanol. In the present investigation, the combustion chamber surface was coated with a 0.5-mm thickness of partially stabilized zirconia, and experiments were carried out in a single-cylinder, two-stroke SI engine with gasoline and methanol as fuels. Test results indicate that with gasoline as a fuel, the thin ceramic-coated combustion chamber improves the part load to medium load operation considerably, but it affects the performance at higher speeds and at higher loads to the extent of knock and loss of brake power by about 18%. However, with methanol as a fuel, the performance is better under most of the operating range and free from knock.
Technical Paper

Spark-Assisted Alcohol Operation in a Low Heat Rejection Engine

1995-02-01
950059
This work demonstrates how the performance of a standard spark-assisted alcohol engine can be improved by using the Low Heat Rejection (LHR ) concept. The improved combustion is attained by better using the greater heat energy in the combustion chamber of a LHR engine - in this case for the faster vaporisation and better mixing of the alcohol fuels. For this program the LHR engine used has a single cylinder diesel and alcohols sued as sole fuels were ethanol and methanol. For spark assistance an extended electrode spark plug was used and location and projection were optimised for best results. These configurations were evaluated for performance and emissions with and without LHR implementation. The results show that the engine with LHR, ethanol fuel and spark assistance has the highest brake thermal efficiency with the lowest emissions.
Technical Paper

The Influence of High-Octane Fuel Blends on the Performance of a Two-Stroke SI Engine with Knock-Limited-Compression Ratio

1994-10-01
941863
The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a co-solvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends.
X