Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimizing the Strength and Ductility of Al-6061 Alloy by Various Post-Rolling Ageing Treatments

The effect of different cold- rolling and cryo-rolling routes on the strength and ductility of Al-6061 alloy was thoroughly investigated. Rolling decreased the grain size and increased the strength according to the Hall-Petch relationship. However subjecting the samples to ageing at different temperatures and for different time period increased the strength and improved the ductility. The ductility was improved due to the rearrangement and even decrease in dislocation density due to recovery and recrystallization during ageing while the strength was maintained due to ageing. Evolution of microstructure was investigated by optical microscopy, scanning electron microscopy. Preliminary hardness measurements coupled with tensile tests indicate the improvement of both yield strength and ductility. The disparity in ultimate tensile strength, yield strength and the elongation to failure with different ageing temperatures and for different time period is determined and discussed.
Technical Paper

Effect of Crystallographic Texture on Formability of Some FCC Metals and Alloys

Formability of metals and alloys in general and aluminium alloys and steels in particular is of paramount importance in sheet metal forming in automobile industry. It is well understood that the evolution of preferred crystallographic orientation of crystallites or texture during prior thermo-mechanical processing of sheets plays an important role in determining formability. The formability of sheet is measured in terms of the Lankford parameter or the plastic strain ratio which is defined as the ratio of strain in width direction to that in the thickness direction (R = εw/εt). The variation of Lankford parameter with the rolling direction and standard and ΔR value is widely used in industry as a standard for estimating the formability of the rolled sheets.