Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

The Secondary Organic Carbon (SOC) Formation from a CRDI Automotive Diesel Engine Exhaust

2011-04-12
2011-01-0642
Condensed soot coming out of vehicular exhaust is commonly classified as organic carbon (OC) and elemental carbon (EC). OC can be directly emitted to the atmosphere in the particulate form (primary carbon) from the tailpipe or can be produced by gas-to-particle conversion process (secondary organic carbon, SOC). Under typical atmospheric dilution conditions, most of the semi-volatile material is present in the form of soot. SOC holds wider implications in terms of their adverse health and climate impact. Diesel exhaust is environmentally reactive and it has long been understood that the ambient interaction of exhaust hydrocarbons and NOx results in the formation of ozone and other potentially toxic secondary organic carbon species. The current emission norms look at the primary emissions from the engine exhaust. Also, research efforts are geared towards controlling the emissions of primary carbon.
Technical Paper

Performance, Emission and Combustion Characteristics of Jatropha Oil Blends in a Direct Injection CI Engine

2009-04-20
2009-01-0947
Vegetable oils have energy content suitable to be used as compression ignition (CI) engine fuel. However, several operational and durability problems of using straight vegetable oils in CI engines are reported in the literature, which are primarily caused by their higher viscosity and low volatility compared to mineral diesel. The viscosity can be brought in acceptable range by (i) chemical process of transesterification, (ii) blending of oil with mineral diesel or (iii) by heating the vegetable oil using exhaust gas waste heat. Reduction of viscosity by blending or exhaust gas heating saves the chemical processing cost of transesterification. Present experimental investigations were carried out for evaluating combustion, performance and emission behavior of Jatropha oil blends in unheated conditions in a direct injection CI engine at different load and constant engine speed (1500 rpm).
Journal Article

Oxidation Stability, Engine Performance and Emissions Investigations of Karanja, Neem and Jatropha Biodiesel and Blends

2011-04-12
2011-01-0617
Poor oxidation stability is the central problem associated with the commercial acceptance of the biodiesel. The EU standard (EN14214) specifies a minimum value of 6 h for biodiesel induction period at 110°C, measured with Rancimat instrument. Most of the freshly prepared biodiesel generally have lower induction periods than prescribed by the standards. Anti-oxidants are therefore added to enhance the oxidation/ storage stability of biodiesel. Oxidation is an exothermic process, and the reaction heat evolved makes it possible to use thermo gravimetric analysis (TGA). In the present study, the oxidation stability of methyl esters derived from Karanja oil and Neem oil, stabilized with anti-oxidant pyrogalol (PY) was studied by DSC. Onset temperature of freshly prepared Karanja biodiesel (KOME) and Neem biodiesel (NOME) was observed to be 148 and 153°C respectively. The stability increases with increasing anti-oxidant dosage.
Technical Paper

Oxidation Stability of Biodiesel Produced from Non-Edible Oils of African Origin

2011-04-12
2011-01-1202
Mono alkyl esters of long-chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, also known as biodiesel are well positioned to replace mineral diesel. The outstanding technical problem with biodiesel is that it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. The chemical reactivity of esters can therefore be divided into oxidative and thermal instability, which can be determined by the amount and configuration of the olefinic unsaturation in the fatty acid chains. Many of the plant-derived fatty oils contain polyunsaturated fatty acids that are more prone to oxidation. Increasing production of biodiesel from vegetable oils (edible) places strain on food production, availability and price and leads to food versus fuel conflict.
Technical Paper

Microscopic and Macroscopic Spray Characteristics of Gasohols Using a Port Fuel Injection System

2020-04-14
2020-01-0324
Depleting fossil-fuels and increasing harmful emissions by the combustion of fossil fuels in IC engine is a matter of great concern. It is necessary to explore solutions complying with the prevailing emission norms in different sectors. Methanol has the potential amongst all primary alcohols for widespread use in transport sector due to its clean-burning, high octane rating, sources of production like high ash coal, and biomass. The addition of methanol to gasoline can significantly reduce engine-out emissions. Gasoline-Methanol blends (Gasohols) can be used to reduce dependence of the transport sector on fossil fuels. This study deals with investigation of spray characteristics of methanol-gasoline blends as it affects engine performance and emissions characteristics to a great extent.
Technical Paper

Microscopic and Macroscopic Spray Characteristics of GDI Injector Using Gasohol Fuels at Various Injection Pressures

2016-04-05
2016-01-0868
The development of advanced gasoline direct injection (GDI) injector requires in-depth investigations of macroscopic and microscopic spray characteristics. Over the years, GDI injectors have undergone exponential improvement to be able to deliver fuel at high injection pressure. High fuel injection pressure (FIP) leads to superior fuel atomization, and consequently superior fuel-air mixing. Present investigations aim to improve our fundamental knowledge of the furl-air mixture preparation mechanisms of different test fuels. Experiments were conducted to study spray breakup of GDI injector. This study focuses on the spray investigations using Phase Doppler Interferometry (PDI) for the measurement of various spray related studies such as determination of arithmetic mean diameter (AMD), sauter mean diameter (SMD) and spray droplet velocity distributions.
Technical Paper

Macroscopic and Microscopic Spray Characteristics of Diesel and Karanja Biodiesel Blends

2016-04-05
2016-01-0869
Fuel injection pressure (FIP) is one of the most important factors affecting diesel engine performance and particulate emissions. Higher FIP improves the fuel atomization, which results in lower soot formation due to superior fuel-air mixing. The objective of this spray study was to investigate macroscopic and microscopic spray parameters in FIP range of 500-1500 bar, using a solenoid injector for biodiesel blends (KB20 and KB40) and baseline mineral diesel. For these test fuels, effect of ambient pressure on macroscopic spray characteristics such as spray penetration, spray area and cone angle were investigated in a constant volume spray chamber (CVSC). Microscopic spray characteristics such as velocity distribution of droplets and spray droplet size distribution were measured in the CVSC at atmospheric pressure using Phase Doppler Interferometry (PDI).
Technical Paper

Macroscopic Spray Parameters of Karanja Oil and Blends: A Comparative Study

2012-01-09
2012-28-0028
Diesel engines are very efficient prime movers in their power range. Fuel is directly injected into the combustion chamber. Performance and emission characteristics of diesel engines are highly influenced by the fuel spray parameters and atomization of the injected fuel. As the emission regulations become stringent, it is very important to optimize the combustion in internal combustion engines for different fuels including alternative fuels. Spray visualization using optical techniques play a very important role to analyze macroscopic spray parameters and fuel atomization behavior. In the present experimental study, an important alternative CI engine fuel, Karanja oil and its blends with diesel have been investigated for their spray parameters and fuel atomization relative to mineral diesel. These parameters are different for the two fuels because of difference in the viscosity and density of the fuels.
Technical Paper

Experimental Investigation on Intake Air Temperature and Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Homogeneous Charge Compression Ignition Engine

2011-04-12
2011-01-1183
Due to the increasingly stricter emission legislations and growing demand for lower fuel consumption, there have been significant efforts to improve combustion efficiency, while satisfying the emission requirements. Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI, fully homogeneous charge HCCI combustion can be realized only in a limited operating range. Control of HCCI engines to obtain the desirable operation requires understanding of how different charge variables influence the cyclic variations in HCCI combustion. Under certain operating conditions, HCCI engines exhibit large cyclic variations in ignition timing. Cyclic variability ranging from stochastic to deterministic patterns can be observed. One important design goal for engine development is to minimize cyclic variability.
Technical Paper

Experimental Investigation of Cycle-by-Cycle Variations in CAI/HCCI Combustion of Gasoline and Methanol Fuelled Engine

2009-04-20
2009-01-1345
The development of vehicles continues to be determined by increasingly stringent emissions standards including CO2 emissions and fuel consumption. To fulfill the simultaneous emission requirements for near zero pollutant and low CO2 levels, which are the challenges of future powertrains, many research studies are currently being carried out world over on new engine combustion process, such as Controlled Auto Ignition (CAI) for gasoline engines and Homogeneous Charge Compression Ignition (HCCI) for diesel engines. In HCCI combustion engine, ignition timing and combustion rates are dominated by physical and chemical properties of fuel/air/residual gas mixtures, boundary conditions including ambient temperature, pressure, and humidity and engine operating conditions such as load, speed etc.
Technical Paper

Effects of Spray Droplet Size and Velocity Distributions on Emissions from a Single Cylinder Biofuel Engine

2016-04-05
2016-01-0994
Biodiesel made from Jatropha oil by transesterification process has viscosity and other important physical properties comparable to mineral diesel hence it can be used as an alternate fuel in conventional diesel engines. It is important to investigate the spray characteristics of biodiesel because emissions from the engines are dependent on fuel atomization process and resulting fuel-air mixing. This study focuses on the Jatropha biodiesel spray investigations using Phase Doppler Interferometry (PDI) for measurement of various microscopic spray parameters such as Sauter mean diameter (SMD) and spray droplet size and velocity distributions. The spray and engine experiments were carried out for Jatropha biodiesel (JB100) and their 20% blends (JB20) with mineral diesel as baseline. Fuel injection pressure during the spray experiments was maintained at 200 bars for all tests, quite similar to small horse power agricultural engines, and the fuel injection quantity was varied.
Technical Paper

Comparative Study of PM Mass and Chemical Composition from Diesel and Biodiesel Fuelled CRDI SUV Engine

2012-01-09
2012-28-0012
Adverse health effects of particulate matter (PM) originating from diesel engine exhaust are largely attributed to the complex chemical composition of the exhaust species. This study was set out to characterize particulate emissions from a Euro-III-compliant modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at rated engine speed (1800 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. This study is mainly divided into two main sections, first one includes the gravimetric analysis in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICPOES). The second section includes real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs).
Technical Paper

An Experimental Investigation of Combustion, Emissions and Performance of a Diesel Fuelled HCCI Engine

2012-01-09
2012-28-0005
Homogeneous charge compression ignition (HCCI) is an advanced combustion concept that is developed as an alternative to diesel engines with higher thermal efficiency along with ultralow NOx and PM emissions. To study the performance of this novel technique, experiments were performed in a two cylinder engine, in which one cylinder is modified to operate in HCCI mode while other cylinder operates in conventional CI mode. The quality of homogeneous mixture of air and fuel is the key feature of HCCI combustion. Low volatility of diesel is a major hurdle in achieving HCCI combustion because it is difficult to make a homogeneous mixture of air and fuel. This problem is resolved by external mixture preparation technique in uses a dedicated diesel vaporizer with an electronic control system. All the injection parameters such as fuel quantity, fuel injection timing, injection delay etc., are controlled by the injection driver circuit.
X