Refine Your Search


Search Results

Technical Paper

X-by-Wire: Opportunities, Challenges and Trends

This paper will outline the results of a study performed to analyze the market introduction of x-by-wire applications in the context of weak global industry environment, technological and legislative challenges, standardization issues and end customer benefits. This paper attempts to provide a bird-view on influence factors and impacts for the x-by-wire market, including e.g. the end customer's acceptance and legal environment driving further development in specific areas. Further, major driving forces on semiconductor/component level will be outlined regarding e.g. pin-count, computation performance and heat dissipation, but also possible scenarios and solutions towards safe and efficient system design and partitioning.
Technical Paper

Virtual Prototypes as Part of the Design Flow of Highly Complex ECUs

Automotive powertrain and safety systems under design today are highly complex, incorporating more than one CPU core, running with more than 100 MHz and consisting of several 10 million transistors. Software complexity increases similarly making new methodologies and tools mandatory to manage the overall system. The use of accurate virtual prototypes improves the quality of systems with respect to system architecture design and software development. This approach is demonstrated with the example of the PCP/GPTA subsystem for Infineon's AUDO-NG powertrain controllers.
Technical Paper

Timing Analysis and Tracing Concepts for ECU Development

Integration scenarios for ECU software become more complicated, as more constraints with regards to timing, safety and security need to be considered. Multi-core microcontrollers offer even more hardware potential for integration scenarios. To tackle the complexity, more and more model based approaches are used. Understanding the interaction between the different software components, not only from a functional but also from a timing view, is a key success factor for high integration scenarios. In particular for multi-core systems, an amazing amount of timing data can be generated. Usually a multi-core system handles more software functionality than a single-core system. Furthermore, there may be timing interference on the multicore systems, due to the shared usage of buses, memory banks or other hardware resources.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

TTCAN from Applications to Products in Automotive Systems

This paper outlines the results of a study performed to analyze the mission of TTCAN from applications to products for automotive systems. As commonly acknowledged communication is one of the key elements for future and even present systems such as an automobile. A dramatically increasing number of busses and gateways even in low- to midrange vehicles is putting significant burden upon the validation scenario as well as the cost. Accordingly, numerous new initiatives have been started worldwide in order to find solutions to this; some of them by the definition of enhanced or new protocols. This paper shall have a look particular on the new standard of TTCAN (time-triggered communication on CAN). This protocol is based on the CAN data link layer as specified in ISO 11898-1 and may use standardized CAN physical layers such as specified in ISO 11898-2 (high-speed transceiver) or in ISO 11898-3 (fault-tolerant low-speed transceiver).

Supplier Discussions - 2012

Seven different suppliers will discuss their latest technologies. Panelist Jon Bereisa, Auto Lectrification LLC John Burgers, Dana Canada Corporation Derek De Bono, Valeo Dusan Graovac, Infineon Technologies AG Ronald P. Krupitzer, American Iron and Steel Institute Timothy J. Lawler, Bosch Corp. Ian M. Sharp, Flybrid Systems LLP
Technical Paper

Smart 24 V Battery Switch for a Reliable Redundant Power Supply in Commercial, Construction, and Agriculture Vehicles (CAV)

For highly automated driving, commercial vehicles require an Electric/Electronic (E/E) architecture, which - in addition to sensor fusion - ensures safety-critical processes such as steering and braking at all times. Among other things, a redundant 24 V supply with corresponding disconnection is required. The battery switch is a key component. Commercial, construction, and agricultural vehicles (CAV) need to operate at the highest possible availability and the lowest possible cost of ownership. This is why automated and autonomous driving has the potential to revolutionize the CAV sector. Driverless machines can be operated around the clock and almost non-stop. Platooning allows automated, interconnected trucks to drive in a convoy and very close to each other. Platooning saves fuel.
Technical Paper

Redundant and Diverse Magnetic Field Digital Linear Hall Sensor Concept for ASIL D Applications

Functional safe systems fulfilling the ISO 26262 standard are getting more important for automotive applications where additional redundant and diverse functionality is needed for higher rated ASIL levels. This can result in a very complex and expensive system setup. Here we present a sensor product developed according ISO 26262. This sensor product comprises a two channel redundant and also diverse implemented magnetic field sensor concept with linear digital outputs on one monolithically integrated silicon substrate. This sensor is used for ASIL D applications like power-steering torque measurement, where the torque is transferred into a magnetic field signal in a certain magnetic setup, but can also be used in other demanding sensor applications concerning safety. This proposed and also implemented solution is beneficial because of implementation on a single chip in one single chip-package but anyway fulfilling ASIL D requirements on system level.
Technical Paper

Non-standard CAN Network Topologies Verification at High Speed Transmission Rate using VHDL-AMS

This paper considers the verification of non-standard CAN network topologies of the physical layer at high speed transmission rate (500.0Kbps and 1.0Mbps). These network topologies including single star, multiple stars, and hybrid topologies (multiple stars in combination with linear bus or with ring topology) are simulated by using behavior modeling language (VHDL-AMS) in comparison to measurement. Throughout the verification process, CAN transceiver behavioral model together with other CAN physical layer simulation components have been proved to be very accurate. The modeling of measurement environment of the CAN network is discussed, showing how to get the measurement and simulation results well matched. This demonstrates that the simulation solution is reliable, which is highly desired and very important for the verification requirement in CAN physical layer design.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Technical Paper

Motor Control in Auxiliary Drive Systems How to Choose the Best Fitting Electronic Solution

In modern vehicles, the number of small electrical drive systems is still increasing continuously for blowers, fans and pumps as well as for window lifts, sunroofs and doors. Requirements and operating conditions for such systems varies, hence there are many different solutions available for controlling such motors. In most applications, simple, low-cost DC motors are used. For higher requirements regarding operating time and in stop-start capable systems, the focus turns to highly efficient and durable brushless DC motors with electronic commutation. This paper compares various electronic control concepts from a semiconductor vendor point of view. These concepts include discrete control using relays or MOSFETs. Furthermore integrated motor drivers are discussed, including system-on-chip solutions for specific applications, e.g. specific ICs for window lift motors with LIN interface.
Technical Paper

Microsecond Bus (μSB): The New Open-Market Peripheral Serial Communication Standard

For the past approximately 20 years, the Serial Peripheral Interface (SPI) has been the established standard for serial communication between a host or central microprocessor and peripheral devices. This standard has been used extensively in control modules covering the entire spectrum of automotive applications, as well as non-automotive applications. As the complexity of engine control modules grows, with the number of vehicle actuators being controlled and monitored increasing, the number of loads the central microprocessor has to manage is growing accordingly. These loads are typically controlled using discrete and pulse-width modulated (PWM) outputs from the microcontroller when real-time operation is essential or via SPI when real-time response is not critical. The increase of already high pin-count on microcontrollers, the associated routing effort and demand for connected power stages is a concern of cost and reliability for future ECU designs.
Technical Paper

Leveraging Hardware Security to Secure Connected Vehicles

Advanced safety features and new services in connected cars depend on the security of the underlying vehicle functions. Due to the interconnection with the outside world and as a result of being an embedded system a modern vehicle is exposed to both, malicious activities as faced by traditional IT world systems as well as physical attacks. This introduces the need for utilizing hardware-assisted security measures to prevent both kinds of attacks. In this paper we present a survey of the different classes of hardware security devices and depict their different functional range and application. We demonstrate the feasibility of our approach by conducting a case study on an exemplary implementation of a function-on-demand use case. In particular, our example outlines how to apply the different hardware security approaches in practice to address real-world security topics. We conclude with an assessment of today’s hardware security devices.
Technical Paper

Integrated Mechatronic Design and Simulation of a Door Soft Close Automatic with Behavioral Models of Smart Power ICs

Based on the example of a door soft close automatic the potential of integrated system simulation in the automotive systems development is demonstrated. The modeling approach is covering several physical domains like mechanics, electromagnetics and semiconductor physics. With adequate simplifying methods a time efficient model is generated, which allows system optimization in the concept phase. Time consuming redesigns can thus be minimized.
Technical Paper

Hybrid Cars Setting New Challenges for Optimized Power Semiconductors

The electrification of the powertrain is still one of the main challenges and innovation drivers for modern cars. With the introduction of the Toyota Prius, launched in Japan in 1997 the first commercially available hybrid car in mass production, the development continued towards the BMW i3 launched in July 2013. One main component for all kind of hybrid cars is still the power semiconductor, which is used for DC/DC converters and for the inverter to drive the electric motor for the traction control. What makes the selection of the right power semiconductor complex, is the variety of different voltage levels within the car (from standard 12V board net, the new 48V board net all the way up to 400V and above) plus different requirements in terms of switching and conduction performance, or accordingly power losses. The selection of device by application and voltage will be discussed in this paper.

High Temperature Power Device and Packaging - The Technology Leap to Achieve Cost, Power Density and Reliability Target

The three major challenges in the power electronics in hybrid and electric vehicles are: System cost, power density and reliability. High temperature power device and packaging technologies increases the power density and reliability while reducing system cost. Advanced Silicon devices with synthesized high-temperature packaging technologies can achieve junction temperature as high as 200C (compared to the present limitation of 150C) eliminating the need for a low-temperature radiator and therefore these devices reduces the system cost. The silicon area needed for a power inverter with high junction temperature capability can be reduced by more than 50 - 75% thereby significantly reducing the packaging space and power device and package cost. Smaller packaging space is highly desired since multiple vehicle platforms can share the same design and therefore reducing the cost further due to economies of scale.
Technical Paper

High Performance Processor Architecture for Automotive Large Scaled Integrated Systems within the European Processor Initiative Research Project

Autonomous driving systems and connected mobility are the next big developments for the car manufacturers and their suppliers during the next decade. To achieve the high computing power needs and fulfill new upcoming requirements due to functional safety and security, heterogeneous processor architectures with a mixture of different core architectures and hardware accelerators are necessary. To tackle this new type of hardware complexity and nevertheless stay within monetary constraints, high performance computers, inspired by state of the art data center hardware, could be adapted in order to fulfill automotive quality requirements. The European Processor Initiative (EPI) research project tries to come along with that challenge for next generation semiconductors. To be as close as possible to series development needs for the next upcoming car generations, we present a hybrid semiconductor system-on-chip architecture for automotive.
Technical Paper

Hardware and Software Constraints for Automotive Firewall Systems?

Introduction The introduction of Ethernet and Gigabit Ethernet [2] as the main invehicle network infrastructure is the technical foundation for different new functionalities such as piloted driving, minimizing the CO2- footprint and others. The high data rate of such systems influences also the used microcontrollers due the fact that a big amount of data has to be transferred, encrypted, etc. Figure 1 Motivation - Vehicles will become connected to uncontrolled networks The usage of Ethernet as the in-vehicle-network enables the possibility that future road vehicles are going to be connected with other vehicles and information systems to improve system functionality. These previously closed automotive systems will be opened up for external access (see Figure 1). This can be Car2X connectivity or connection to personal devices. Allowing vehicle systems to communicate with other systems that are not within their physical boundaries impose a previously non-existing security problem.
Technical Paper

Giant Magneto Resistors - Sensor Technology and Automotive Applications

The paper will give an introduction to the principle of the giant magneto resistive - GMR - effect and the silicon system integration of GMR sensors. The two main applications of a GMR as a magnetic field strength sensor and as an angular field direction sensor will be discussed under consideration of automotive requirements. The typical applications of a magnetic field strength GMR sensor in incremental position and speed sensing and those of GMR angular field sensors in position sensing will be summarized. Finally advantages of GMR in those applications will be discussed and conclusions on the use of GMR in automotive sensing will be drawn.