Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Counteracting detrimental EGR effects with diesel fuel additive

2003-05-19
2003-01-1915
A new generation of fluid technology using novel diesel fuel detergent/dispersant chemistry provides a multitude of beneficial effects to the diesel engine, especially the latest model designs. In addition to improved injector, valve and combustion chamber deposit removal, the additive restores power, fuel economy, performance and emission levels1. Positive observations have also been documented along with improved performance concerning crankcase lube viscosity, soot loading and TBN retention. An even greater added benefit is the inherent capability of the fuel additive to deal with several EGR issues now prominent with the introduction of new engines. Recent research, reported herein, has uncovered the extensive efficacy of this chemistry for piston durability and neutralization of ring corrosion phenomena. All of the beneficial additive attributes are further enhanced with increased oxidative and thermal fuel stability and no loss of filterability.
Technical Paper

Cloud Point Depressant Response Effects in Ultra-Low-Sulfur Diesel Fuel

2005-10-24
2005-01-3898
Cloud point depressants (CPD) have been successfully used for many years in low-sulfur diesel fuels. For over ten years, custom-designed, specialty polymer chemistry has enabled refiners to meet cloud point (CP) guidelines with substantially less kerosene. This translates into greater refined yields through cut-point adjustment upgrades and the potential for diverting kerosene to more lucrative market opportunities, such as jet fuel. The practice of cut-point downgrades to gas oil can be costly because diesel fuel generally has greater value. Kerosene dilutions have historically been as high as 30%-40% by volume with low-sulfur diesel fuels [1, 2]. While kerosene addition enables fuels to reach CP guidelines, it may negatively impact the fuel's energy content, cetane number, lubricity, flash point and density. Properly designed CP additives are able to substantially reduce or even eliminate the need for kerosene, thus substantially reducing refinery costs.
X