Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Petroleum-Based and Bio-Derived Jet Fuel Efficiency Optimization Using Fuel Injection in a 34cc 4- Stroke Spark-Ignition Engine

2011-11-08
2011-32-0601
Many of the engines used in Remotely Piloted Aircraft (RPA), come directly from the remote-control (R/C) aircraft market, which turn a propeller but are not necessarily built for the greatest efficiency or reduced fuel consumption. The DoD “single fuel concept” is pushing these platforms to be able to operate with JP-8 using an Otto Cycle engine. Additionally, with increased environmental concern with fossil fuels, possible future DoD requirements could require the use of bio-derived liquid fuels. The research presented in this paper takes steps to satisfying both the efficiency and single fuel requirements. The Fuji BF-34EI engine was successfully shown to operate effectively with JP-8, Diesel, Algae-based Diesel and Camelina based Hydroprocessed Renewable Jet fuel. When generally compared over the entire engine operating map, between AVGAS and JP-8, the latter is shown to present a 10-20% lower brake specific fuel consumption (BSFC).
Technical Paper

Experimental Study of a Pre-Chamber Jet Igniter in a Turbocharged Rotax 914 Aircraft Engine

2013-04-08
2013-01-1629
An experimental study is performed to investigate the possibility of relaxing the octane requirement of a Rotax 914 engine equipped with a pre-chamber jet ignition system. A pre-chamber jet igniter with no auxiliary fuel addition is designed to replace the spark plug in cylinder two of the test engine and is evaluated across engine speeds ranging from 2500 to 5500 RPM. Experiments are performed across both normally aspirated and boosted configurations using regular 87 AKI gasoline fuel. Normally aspirated results at 98 kPa manifold absolute pressure show a 7-10° burn rate improvement with the jet ignition combustion system. Tests to determine the maximum load at optimal combustion phasing (no spark retard) are then conducted by increasing boost pressure up to maximum knock limits.
Technical Paper

Design, Simulation, and Testing of a Pressure Wave Supercharger for a Small Internal Combustion Engine

2014-09-16
2014-01-2136
The engines used to power small unmanned aerial systems are often modified commercial products designed for use by hobbyists on small model aircraft at low altitude. For military applications, it is desirable to fly at high altitudes. Maintaining power from the engine at the reduced ambient air pressures associated with high altitudes requires some method of increasing air delivery to the intake manifold. Conventional turbochargers and superchargers are typically very inefficient for the low mass flows associated with small engines. Due to its unique characteristics, a pressure wave supercharger (PWS) can avoid many scaling-related losses. This project designed a small-scale PWS for turbo-normalization of a Brison 95 cc two-stroke engine for a small unmanned aerial vehicle. A larger PWS called the Comprex®, designed by Brown Boveri Company, was simulated using a quasi-one-dimensional Computational Fluid Dynamics (CFD) code developed at the NASA Glenn Research Center.
Technical Paper

Control of Fuel Octane for Knock Mitigation on a Dual-Fuel Spark-Ignition Engine

2013-04-08
2013-01-0320
A two-port fuel-injection (PFI) system is added to a Rotax 914 four-cylinder spark-ignition engine to allow two fuels of different reactivity to be injected simultaneously in order to vary the fuel octane number during engine operation. Engine performance using the dual-fuel PFI system is compared to that using injection of primary-reference-fuel (PRF) blends via a single-PFI system for fuel octane ratings of 50, 70, and 87 octane. The on-the-fly octane control of dual-PFI system is found to control fuel-octane well enough to produce maximum indicated mean effective pressure (IMEPn) results within ± 2% of single-PFI PRF IMEPn results. IMEPn is compared among dual-PFI blends from 20 to 87 octane, neat n-heptane, neat JP-8, and JP-8/isooctane blends. Maximum IMEPn for these fuels is established for the Rotax 914 engine operating from 2500 to 5800 rev/min.
X