Refine Your Search

Topic

Search Results

Technical Paper

the use of Bench Wear tests in Materials Development

1959-01-01
590065
TWO TYPES of bench wear tests employed by the General Motors Research Laboratories are described, and examples are given to illustrate the application of the tests to material development problems. It is shown that correlation of a bench test with service may be achieved even when the laboratory test conditions do not appear to duplicate service conditions exactly. It is postulated that this behaviour is related to the formation of certain types of surface films during the wearing process. Some preliminary results are given of a study of the influence of lubricant type and material composition on the formation of anti-wear films.
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

Squeak Studies on Material Pair Compatibility

2001-04-30
2001-01-1546
The more noise and vibration improvements are incorporated into our vehicles, the more customers notice squeaks and rattles (S&R). Customers increasingly perceive S&R as a direct indicator of vehicle build quality and durability. The high profile nature of S&R has the automotive industry striving to develop the understanding and technology of how to improve the S&R performance in the vehicle. Squeaks and itches make up a significant amount of Squeak and Rattle complaints found in today's vehicles. Squeaks and itches are the result of stick slip behavior between two interacting surfaces. Squeak itch behavior is dependent upon a large number of parameters including but not limited to: the material itself, temperature, humidity, normal load, system compliance, part geometry, velocity, surface roughness, wear, contaminants, etc. This paper will describe the analysis of sound data and friction data and the relationship between them.
Technical Paper

Refinement and Verification of the Structural Stress Method for Fatigue Life Prediction of Resistance Spot Welds Under Variable Amplitude Loads

2000-10-03
2000-01-2727
The work presented here builds on the practical and effective spot weld fatigue life prediction method, the structural stress method (SSM), that was developed at Stanford University. Constant amplitude loading tests for various spot weld joint configurations have been conducted and the SSM has been shown to accurately predict fatigue life. In this paper refinements to the structural stress approach are first presented, including a variable amplitude fatigue life prediction method based on the SSM and Palmgren-Miner's rule. A test matrix was designed to study the fatigue behavior of spot welds under tensile shear loading conditions. Constant amplitude tests under different R-ratios were performed first to obtain the necessary material properties. Variable amplitude tests were then performed for specimens containing single and multiple welds.
Technical Paper

Multiple Solutions by Performance Band: An Effective Way to Deal with Modeling Error

2004-03-08
2004-01-1688
Robust optimization usually requires numerous functional evaluations, which is not feasible when the functional evaluation is time-consuming. Examples in automobile industry include crash worthiness/safety and fatigue life simulations. In practice, a response surface model (RSM) is often used as a surrogate to the CAE model, so that robust optimization can be carried out. However, if the error in the RSM is significant, the solution based on the RSM can be invalid. This paper proposes a method of finding multiple candidate solutions, all of which have similar predicted performances. This approach is effective in finding the close-to-optimum solutions when the model has error, and providing design alternatives. Examples are provided to illustrate the method.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Interrelationship of Design, Lubrication, and Metallurgy in Cam and Tappet Performance

1956-01-01
560017
A PROGRAM was undertaken to evaluate the performance of cams and tappets as influenced by design, lubrication, and metallurgical techniques. Car and dynamometer tests and a newly developed bench test are described. The latter shows promise in lending itself to the determination of the effects of single variables in a practical, short, and economic fashion, while the former do not. For the conditions of high contact stress and boundary lubrication experienced in cam and tappet operation, the authors draw several conclusions from the test work described, categorically related to the design, lubrication, and metallurigical problems present.
Technical Paper

Human Volunteer Testing of GM Air Cushions

1972-02-01
720443
From November 1970 through August 1971 an extensive program of static and dynamic air cushion inflation tests utilizing human volunteers was conducted at Holloman Air Force Base, New Mexico, sponsored by the Department of Transportation. Forty-one full cushion deployment static firings were made, with air cushion hardware and seating buck environment designed by General Motors. The static series was followed by 35 dynamic sled firings of human volunteers, beginning at 8.6 g (15.1 mph) and culminating at 21.7 g (31.5 mph). A major objective of both the static and dynamic test series was to identify changes in air-cushion design found necessary to improve its protective capability for human beings. Because of the severity of cushion deployment, one modification was made following the initial static tests: The orifice diameter size of the bag inlet was reduced from 1.0 to 0.6 in to diminish the rapidity of bag inflation. This modification proved effective in the dynamic series.
Technical Paper

Human Factors Evaluation of Headlight Switching Systems

1974-02-01
740998
A search for methods of switching a proposed three beam headlight system led to the evaluation of 41 possible schemes. Human factors criteria reduced the original 41 to three systems which were tested in a laboratory with a broad range of subjects. Recordings of practice trials, learning trials, and the responses to visual cues projected on a screen were analyzed. The same test procedure was also used to compare three alternative ways of switching conventional two beam headlight systems. Summary data is presented for the six systems tested grouped by test subject age, sex, and driving experience. The most pronounced difference observed was in the subjective preference rating among two beam switching systems. All systems tested resulted in remarkably few learning and practice trials. Small differences were recorded among systems in operational response time.
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
Technical Paper

Field Evaluation of Down-Gauged High Performance RIM Fascia Polymers

1993-03-01
930539
Reducing the wall thickness of automotive fascia offers cost and weight savings over those manufactured today. New high performance RIM polyurethane/urea and polyurea polymers with improved mechanical properties over conventional systems make down-gauging possible while maintaining specified performance.1 Adding low cost, high surface quality fillers to these polymers provides enhanced dimensional stability in fascia at reduced wall thickness, thus meeting ever increasing demands for lower cost and high quality. This paper describes validation studies of filled RIM fascia down-gauged 22% to 3.0 mm wall thickness and compares them to conventional fascia moulded at nominal 3.9 mm wall thickness. High performance polyurethane/urea, polyurea, and conventional polyurethane/urea each incorporating wollastonite, mica, or milled glass were tested. The data include “on-car position” moisture stability, painted impact at low temperature, and material processing.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Evaluation of a Continuous Annealed Bake Hardenable Steel for Improved Dent Resistance

1989-02-01
890711
The potential of bake hardenable steel as a substitute for SAE 1008 steel to reduce gage and improve dent resistance is investigated in this report. Outer body panels in particular are susceptible to palm printing and other forms of denting. Conventional SAE 1008 steel and a developmental continuous annealed bake hardenable steel from Inland Steel Company are compared for dent performance properties. Bake hardenable (BH) steel is a medium strength (200-350 MPa) steel that receives an increase in yield strength during the heating of the paint bake cycle. An increase in yield strength would result in an increase in dent resistance. The increase in dent resistance is more quantitatively evaluated by comparing the BH steel with the current production material (SAE 1008) of a rear compartment lid outer.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Daytime Running Lights (Drls)-A North American Success Story

2001-06-04
2001-06-0044
Many traffic collisions are the result of the driver's failure to notice the other vehicle. It is often cited in police reports that the driver "looked but did not see.'' The purpose of Daytime Running Lights (DRLs) is to increase the visual contrast of DRL-equipped vehicles. Visual contrast, which is the difference in brightness between two areas, is an important characteristic enabling a driver to detect objects. This paper begins with a brief regulatory history of DRLs in the U.S. and how General Motors Corporation (GM) introduced DRL-equipped vehicles. It also describes a DRL effectiveness study conducted by Exponent Failure Analysis Associates of San Francisco for General Motors Corporation. The study compared the collision rates of specific General Motors Corporation, Saab, Volvo and Volkswagen vehicles before and immediately after the introduction of DRLs. Since DRLs are not visible from behind a vehicle, rear-end collisions were not included in the study.
X