Refine Your Search

Topic

Author

Search Results

Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

Variation in Cyclic Deformation and Strain-Controlled Fatigue Properties Using Different Curve Fitting and Measurement Techniques

1999-03-01
1999-01-0364
The strain-life approach is now commonly used for fatigue life analysis and predictions in the ground vehicle industry. This approach requires the use of material properties obtained from strain-controlled uniaxial fatigue tests. These properties include fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), fatigue ductility exponent (c), cyclic strength coefficient (K′), and cyclic strain hardening exponent (n′). To obtain the aforementioned properties for the material, raw data from stable cyclic stress-strain loops are fitted in log-log scale. These data include total, elastic and plastic strain amplitudes, stress amplitude, and fatigue life. Values of the low cycle fatigue properties (σf′, b, εf′, c) determined from the raw data depend on the method of measurement and fitting. This paper examines the merits and influence of using different measurement and fitting methods on the obtained properties.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Structural Composite Floorpan: Design Synthesis, Prototype, Build and Test

1992-06-01
921096
A design synthesis approach is used to design and analyze a Resin-Transfer-Molded (RTM) composite floorpan to meet the product requirements and assess the structural performance. The design envelope is based on packaging constraints representative of a production vehicle to ensure a feasible design intent. Finite element analysis of the composite design is used to guide the design and integrate all of the product performance requirements to achieve a feasible design concept. Issues discussed include the design and analysis, design features, composite material tailoring, prototype fabrication, vehicle build, and product validation. Stiffness, strength and durability tests were performed on the floorpan and the fully trimmed vehicle, and all requirements were met.
Technical Paper

Simulation of the Hybrid III Dummy Response to Impact by Nonlinear Finite Element Analysis

1994-11-01
942227
The Hybrid III dummy is an anthropomorphic (humanlike) test device, generally used in crashworthiness testing to assess the extent of occupant protection provided by the vehicle structure and its restraint systems in the event of vehicle crash. Lumped-parameter analytical models are commonly used to simulate the dummy response. These models, by virtue of their limited number of degrees of freedom, can neither represent accurate three-dimensional dummy geometry nor detailed structural deformations. In an effort to improve the state-of-the-art in analytical dummy simulations, a set of finite element models of the Hybrid III dummy segments - head, neck, thorax, spine, pelvis, knee, upper extremities and lower extremities - were developed. The component models replicated the hardware geometry as closely as possible. Appropriate elastic material models were selected for the dummy “skeleton”, with the exterior “soft tissues” represented by viscoelastic materials.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

SIR Sensor Closure Time Prediction for Frontal Impact Using Full Vehicle Finite Element Analysis

1993-03-01
930643
This paper describes an analytical method to predict the sensor closure time for an airbag (Supplemental Inflatable Restraint - SIR) system in frontal impacts. The analytical tools used are the explicit finite element code, an in-house sensor closure time prediction program, and a full vehicle finite element model. Nodal point information obtained from the full vehicle finite element simulation is used to predict the sensor closure time of the airbag system. This analytical method can provide the important crash signature information for a SIR system development of a new vehicle program. In this paper, 0-degree frontal impacts at four different impact speeds with two different bumper energy absorption systems are studied using the non-linear finite element computer program DYNA3D. It is concluded that this analytical method is very useful to predict the SIR sensor closure time.
Technical Paper

Rear Full Overlap High Speed Car-to-Car Impact Simulation

1995-04-01
951085
A rear full overlap car-to-car high speed impact simulation using the DYNA3D Finite Element Software was performed to examine the crush mode for rear structure of a vehicle and to observe the effect of rear bumper system in order to maintain the fuel system integrity. The study was conducted first for two different bumper system configurations, namely: (1) validating the model for struck vehicle with steel rear bumper system, (2) simulating rear end collision with composite rear bumper system attached to the rear rails of struck vehicle. Later a third simulation of the model was conducted with a viable design modification to the composite bumper system for improved crashworthiness. It was identified that a more comprehensive FEA model of the bullet car including front end structure, powertrain components, cooling system and other components which constitute the load paths should be incorporated in the analysis to obtain more meaningful correlation and crashworthiness prediction.
Technical Paper

Optimization Methods Applied to Determine Clamping Forces in Fixture Design

1999-03-01
1999-01-0414
This paper presents an optimization technique for clamping forces determination in fixture design. First, the finite element analysis (FEA) is applied to determine the coefficients of compliant matrix of a fixture-workpiece system subjected to machining and clamping forces. Then, a nonlinear optimization model is constructed in terms of the FEA results and mechanical and geometrical constraints. The optimization model is derived to determine the feasible clamps under the corresponding force effects. The optimal magnitude and direction of clamping forces minimize the workpiece deformation at particular key points. Finally, a scaled engine block with the 3-2-1 fixturing principle is given as an example.
Technical Paper

Numerical Simulation of a Vehicle Side Impact Test: Development. Application and Design Iterations

1996-02-01
960101
This paper describes a numerical simulation technique applicable to the FMVSS 214 side impact test through the use of the finite element method (FEM) technology. The paper outlines the development of the side impact dummy (SID), moving deformable barrier (MDB) and the test vehicle FEM models, as well as the development of new advanced constitutive models of materials and algorithms in LS-DYNA3D which are related to the topic. Presented in the paper are some initial simulation problems which were encountered and solved, as well as the correlation of the simulation data to the physical test.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Interrelationship of Design, Lubrication, and Metallurgy in Cam and Tappet Performance

1956-01-01
560017
A PROGRAM was undertaken to evaluate the performance of cams and tappets as influenced by design, lubrication, and metallurgical techniques. Car and dynamometer tests and a newly developed bench test are described. The latter shows promise in lending itself to the determination of the effects of single variables in a practical, short, and economic fashion, while the former do not. For the conditions of high contact stress and boundary lubrication experienced in cam and tappet operation, the authors draw several conclusions from the test work described, categorically related to the design, lubrication, and metallurigical problems present.
Book

IDB-C Data Bus

2002-04-15
By using descriptive charts and graphs, this report provides an analysis of the IDB-C network at the Subsystem level and at the vehicle level, using data comparison between modeling and simulation of the network and measurement and analysis on physical systems.
Technical Paper

Field Experience with the Energy Absorbing Steering Column

1969-02-01
690183
General Motors introduced in its 1967 passenger cars an innovation in the concept of vehicle safety called the “energy-absorbing steering column.” A statistical study of its performance has been conducted on 3000 1968 General Motors passenger cars which were involved in accidents. This field accident study is then compared with raw accident data obtained from ACIR. Various other aspects of the performance of the column are investigated in this summary of field accident experience.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Evaluation of a Continuous Annealed Bake Hardenable Steel for Improved Dent Resistance

1989-02-01
890711
The potential of bake hardenable steel as a substitute for SAE 1008 steel to reduce gage and improve dent resistance is investigated in this report. Outer body panels in particular are susceptible to palm printing and other forms of denting. Conventional SAE 1008 steel and a developmental continuous annealed bake hardenable steel from Inland Steel Company are compared for dent performance properties. Bake hardenable (BH) steel is a medium strength (200-350 MPa) steel that receives an increase in yield strength during the heating of the paint bake cycle. An increase in yield strength would result in an increase in dent resistance. The increase in dent resistance is more quantitatively evaluated by comparing the BH steel with the current production material (SAE 1008) of a rear compartment lid outer.
X