Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Virtual Simulating of Residual Stresses in Aluminum Wheel Designs

The current study shows interesting results obtained by a new virtual approaching for evaluating the final stresses presented in automotive components during its application in vehicle which suggests product engineers a new tool for measuring the residual stresses in casting. As part of this proposal, an automotive as-cast aluminum wheel belong to current production was evaluated in accordance with data acquired in its manufacturing process. At that step, it was taking into account the real information of casting process parameters and the metallurgic results obtained in laboratorial tests such as, metallographic, chemical and mechanical tests. FEA (Finite Element Analysis) on simulation of wheel loading stress was made regarding those preliminary data obtained in CRSFEA simulation (cast residual stress finite element analysis) as entered parameters.
Technical Paper

Powder Metallurgy Application in Automotive Components - Valve Seat Inserts

This work presents aspects related to research and development of high-speed steels for valve seat inserts application. Five series of materials were evaluated: high speed steel M3/2 infiltrated with copper during sintering; high speed steel M3/2 with Cu3P addition; high speed steel M3/2 with Cu3P addition and further copper infiltrated during sintering; high speed steel M3/2 mixed with iron powder; high speed steel M3/2 mixed with iron powder and niobium carbide. The physical and mechanical properties of the evaluated high-speed steels are presented in terms of densification, hardness, and radial mechanical strength. These properties are compared according to the materials processing and heat treatment.
Technical Paper

Influence of residual stresses in aluminum wheel design

The current study shows important results obtained by a new technique of residual stress virtual evaluation in automotive components for improving the development and quality of new products, aiming the structural performance, mass and cost reductions. The approaching those virtual results were adjusted by metallurgic data obtained in metallography, mechanical and chemical analysis. As part of this proposal, an automotive aluminum wheel belong to current production was evaluated in accordance with data acquired in the wheel manufacturing process. It was taking in account the real information of casting process parameters and the metallurgic information obtained in laboratorial tests. In this work, the results show that product residual stresses shall be considerate and evaluated during design phases as improving proposal, new technical concerns and quality improving.
Technical Paper

Influence of Spot Welding Parameters on Al-Si Coated 22MnB5 for Automotive Application

The application of press hardening steels (PHS) Al-Si coating has been increasing in body in white vehicles as an approach to meet the demands of safety and CO2 reduction regulations. The vehicle structures with PHS largely depend on the integrity and the mechanical performance of the spots weld. During the spot welding process, intermetallic phase may appear in function of the chemical composition of the steel and coating. One of these intermetallics is the Fe-Al phase which brittleness decreases the strength of the weld joint. In this study, resistance spot welding (RSW) experiments were performed in order to evaluate the influence of the welding parameters of single-lap joints PHS - 22MnB5 steel grade.
Technical Paper

Fatigue Life of Stabilizer Bars and Specimens for Two Microstructural Conditions: Pearlitic and Martensitic

The current study proposes to approach the fatigue behavior of stabilizer bars and specimens manufactured in quenched / tempered and as-received SAE5160 steels with and without a surface micro-notch. Some S-N specimens and stabilizer bars were shot-peened to improve the fatigue strength due to creation of compressive surface residue stresses and by surface plastic strain and others samples received a surface micro-notch of 0.3 mm depth introduced by EDM process. The crack growth evaluation at micro-notch was made comparatively with da/dN-ΔK curves in CT specimens. The proposed experimental study consists of comparative analysis of da/dN-ΔK and S-N curves, fractographic and, metallographic analysis, stabilizer bar bench tests, and after that, it is intended to show the relevant aspects of two microstructural classes currently specified for stabilizer bars, the beneficial effects obtained by shot peening and the bad influences of surface micro-notches.
Technical Paper

Evaluation of Aluminum Wheels with Focus on Specification Materials and Manufacturing

The growing need to avoid failures in vehicle components have become the methods of quality control of manufacturing processes more efficient and accurate, especially in safety components like automotive wheels. The aim of this work is examines the efficiency of aluminum-silicon specifications related to wheel quality for avoiding the poor results obtained in impact and fatigue tests as result of improper settings in the chemical composition and manufacture process. It is evaluated mainly the content of magnesium in aluminum alloys and certified the correct degree of silicon modification in the microstructure on the performance of these wheels. The test results indicate that even with the chemical composition parameters specified by the standard, the technical validation of the product may not be adequate.
Technical Paper

Camshaft Hardened by Remelting Process - A New Alternative for Usage Combined with Roller Finger Follower

The current study has the proposal to approach the differences in dynamic behavior between camshaft manufactured in the traditional gray cast iron and an alloyed gray cast iron with the improvement on mechanical properties in order to stresses found on roller finger follower applied systems. The main objective of this paper is to show that camshaft made of modified gray cast iron and heat treated through the remelting process is still a good solution for application with roller finger followers systems which requires higher wear resistance standards. The proposed experimental study consists of comparative analysis of microstructure and hardness, dynamometers tests, dimensional measurements of camshafts, and after that, intends to show the higher performance of this manufacturing process in more severe applications of internal combustion engines.
Technical Paper

Automotive Skin Panels Quality Improvement by Means of Finite Element Method

In the middle of the global competition, inside the automotive sector, the perceived quality of costumers, related to the beauty and harmony of the outer skin surfaces of motor vehicles, has become one of the main determinant factors in the purchase process decision. In general, the initial perceived quality of a car is determined by an appealing design of its body, the color and gloss of its paint, and also the manufacturing and assembly accuracy of the skin panels. The appealing design makes the skin panel even more complex and hard to produce with current metal forming technologies and the results are often small distortions on the outer surfaces about tens of microns and most of the times paint does not cover such imperfections. Despite the technological advances along the years, surface quality inspection was still being performed by manual and subjective evaluation by experts.