Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Effect of Injection Pressure on Air Entrainment into Transient Diesel Sprays

1999-03-01
1999-01-0523
The objective of this research was to investigate the effect of injection pressure on air entrainment into transient diesel sprays. The main application of interest was the direct injection diesel engine. Particle Image Velocimetry was used to make measurements of the air entrainment velocities into a spray plume as a function of time and space. A hydraulically actuated, electronically controlled unit injector (HEUI) system was used to supply the fuel into a pressurized spray chamber. The gas chamber density was maintained at 27 kg/m3. The injection pressures that were studied in this current research project were 117.6 MPa and 132.3 MPa. For different injection pressures, during the initial two-thirds of the spray plume there was little difference in the velocities normal to the spray surface. For the last third of the spray plume, the normal velocities were 125% higher for the high injection pressure case.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Technical Paper

Modeling of Equivalence Ratio Effects on Particulate Formation in a Spark-Ignition Engine under Premixed Conditions

2014-04-01
2014-01-1607
3-D Computational Fluid Dynamics (CFD) simulations have been performed to study particulate formation in a Spark-Ignition (SI) engine under premixed conditions. A semi-detailed soot model and a chemical kinetic model, including poly-aromatic hydrocarbon (PAH) formation, were coupled with a spark ignition model and the G equation flame propagation model for SI engine simulations and for predictions of soot mass and particulate number density. The simulation results for in-cylinder pressure and particle size distribution (PSDs) are compared to available experimental studies of equivalence ratio effects during premixed operation. Good predictions are observed with regard to cylinder pressure, combustion phasing and engine load. Qualitative agreements of in-cylinder particle distributions were also obtained and the results are helpful to understand particulate formation processes.
Technical Paper

Load Identification of a Suspension Assembly Using True-Load Self Transducer Generation

2016-04-05
2016-01-0429
The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
Journal Article

Instrumentation, Acquisition and Data Processing Requirements for Accurate Combustion Noise Measurements

2015-06-15
2015-01-2284
The higher cylinder peak pressure and pressure rise rate of modern diesel and gasoline fueled engines tend to increase combustion noise while customers demand lower noise. The multiple degrees of freedom in engine control and calibration mean there is more scope to influence combustion noise but this must first be measured before it can be balanced with other attributes. An efficient means to realize this is to calculate combustion noise from the in-cylinder pressure measurements that are routinely acquired as part of the engine development process. This publication reviews the techniques required to ensure accurate and precise combustion noise measurements. First, the dynamic range must be maximized by using an analogue to digital converter with sufficient number of bits and selecting an appropriate range in the test equipment.
Technical Paper

Improving Upon Best Available Technology: A Clean Flex Fuel Snowmobile

2008-09-09
2008-32-0049
The University of Wisconsin-Madison Snowmobile Team has designed and constructed a clean, quiet, high performance snowmobile for entry in the 2008 Society of Automotive Engineers' Clean Snowmobile Challenge. Built on a 2003 cross-country touring chassis, this machine features a 750 cc fuel-injected four-stroke engine equipped with a fuel sensor which allows operation ranging from regular gasoline to an 85% blend of ethanol and gasoline (E85). The engine has been customized with a Mototron control system which allows for full engine optimization using a range of fuels from E00 to E85. Utilizing a heated oxygen sensor and a 3-way catalyst customized for this engine by W.C. Heraeus-GmbH, this sled reduces NOx, HC and CO emissions by up to 89% to an average specific mass of 0.484, 0.154, 4.94 g/kW-hr respectively. Finally, the Mototron system also allowed Wisconsin to extract another 4 kW from the Weber 750cc engine; producing 45 kW and 65 Nm of torque.
Technical Paper

High Speed Dual-Fuel RCCI Combustion for High Power Output

2014-04-01
2014-01-1320
In recent years society's demand and interest in clean and efficient internal combustion engines has grown significantly. Several ideas have been proposed and tested to meet this demand. In particular, dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion has demonstrated high thermal efficiency, and low engine-out NOx, and soot emissions. Unlike homogeneous charge compression ignition (HCCI) combustion, which solely relies on the chemical kinetics of the fuel for ignition control, RCCI combustion has proven to provide superior combustion controllability while retaining the known benefits of low emissions and high thermal efficiency of HCCI combustion. However, in order for RCCI combustion to be adopted as a high efficiency and low engine-out emission solution, it is important to achieve high-power operation that is comparable to conventional diesel combustion (CDC).
Technical Paper

Guidelines for CFD Simulations of Ground Vehicle Aerodynamics

2006-10-31
2006-01-3544
The CFD tools in aerodynamic design process have been commonly used in aerospace industry in last three decades. Although there are many CFD software algorithms developed for aerodynamic applications, the nature of a complex, three-dimensional geometry in incompressible highly separated, viscous flow made computational simulation of ground vehicle aerodynamics more difficult than aerospace applications. However, recent developments in computational hardware and software industry enabled many new engineering applications on computational environment. Traditional production process has largely influenced by computational design, analysis, manufacturing and visualization. Different aspects of linking advanced computational tools and aerodynamic vehicle design challenges are discussed in the present work. Key technologies like parallel computation, turbulence modeling and CFD/wind tunnel compatibility issues are presented.
Journal Article

Exploring the Role of Reactivity Gradients in Direct Dual Fuel Stratification

2016-04-05
2016-01-0774
Low-temperature combustion (LTC) strategies have been an active area of research due to their ability to achieve high thermal efficiency while avoiding the formation of NOx and particulate matter. One of the largest challenges with LTC is the relative lack of authority over the heat release rate profile, which, depending on the particular injection strategy, either limits the maximum attainable load, or creates a tradeoff between noise and efficiency at high load conditions. We have shown previously that control over heat release can be dramatically improved through a combination of reactivity stratification in the premixed charge and a diffusion-limited injection that occurs after the conclusion of the low-temperature heat release, in a strategy called direct dual fuel stratification (DDFS).
Journal Article

Experimental Investigation of Engine Speed Transient Operation in a Light Duty RCCI Engine

2014-04-01
2014-01-1323
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine over transient operating conditions using a high-bandwidth, transient capable engine test cell. Transient RCCI and CDC combustion and emissions results are compared over an up-speed change from 1,000 to 2,000 rev/min. and a down-speed change from 2,000 to 1,000 rev/min. at a constant 2.0 bar BMEP load. The engine experiments consisted of in-cylinder fuel blending with port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of ultra-low sulfur diesel (ULSD) for the RCCI tests and the same ULSD for the CDC tests.
Technical Paper

Evaluation and Validation of Large-Eddy-Simulation (LES) for Gas Jet and Sprays

2017-03-28
2017-01-0844
Large-eddy simulation (LES) is a useful approach for the simulation of turbulent flow and combustion processes in internal combustion engines. This study employs the ANSYS Forte CFD package and explores several key and fundamental components of LES, namely, the subgrid-scale (SGS) turbulence models, the numerical schemes used to discretize the transport equations, and the computational mesh. The SGS turbulence models considered include the classic Smagorinsky model and a dynamic structure model. Two numerical schemes for momentum convection, quasi-second-order upwind (QSOU) and central difference (CD), were evaluated. The effects of different computational mesh sizes controlled by both fixed mesh refinement and a solution-adaptive mesh-refinement approach were studied and compared. The LES models are evaluated and validated against several flow configurations that are critical to engine flows, in particular, to fuel injection processes.
Technical Paper

Evaluating Surface Film Models for Multi-Dimensional Modeling of Spray-Wall Interaction

2019-04-02
2019-01-0209
Surface film formation is an important phenomenon during spray impingement in a combustion chamber. The film that forms on the chamber walls and piston bowl produces soot post-combustion. While some droplets stick to the wall surface, others splash and interact with the gas present inside the combustion chamber. Accurate prediction of both the film thickness and splashed mass is crucial for surface film model development since it leads to a precise estimation of the amount of soot and other exhaust gases formed. This information could guide future studies aimed at a comprehensive understanding of the combustion process and might enable development of engines with reduced emissions. Dynamic structure Large Eddy Simulation (LES) turbulence model implemented for in-cylinder sprays [1] has shown to predict the flow structure of a spray more accurately than the Reynolds-averaged Navier-Stokes turbulence model.
Technical Paper

Efficiency and Emissions Mapping of RCCI in a Light-Duty Diesel Engine

2013-04-08
2013-01-0289
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOX and particulate matter (PM) emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. Varying the premixed gasoline fraction changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This added control over the combustion process has been shown to allow rapid engine operating point exploration without direct modeling guidance.
Technical Paper

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

2011-09-11
2011-24-0062
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy. The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation.
Journal Article

Effects of Fuel Chemistry and Spray Properties on Particulate Size Distributions from Dual-Fuel Combustion Strategies

2017-03-28
2017-01-1005
The effect of direct-injected fuel on particle size distributions (PSDs) of particulate matter emitted from dual-fuel combustion strategies was investigated. The PSD data were acquired from a light-duty single-cylinder diesel engine operated using conventional diesel combustion (CDC) and two diesel/natural gas dual-fuel combustion strategies. Three different direct-injection (DI) fuels (diesel, 2,6,10-trimethyldodecane, and a primary reference fuel blend) and two different injector nozzles were studied. The DI fuels were chosen to have similar energy and ignition characteristics (heat of combustion and cetane number) but different physical and chemical properties (volatility, aromatics %, viscosity, density). The two nozzles (with different orifice diameter and spray angle) allowed a wide range in DI fuel quantity for the dual-fuel combustion strategies.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

A Zero-Dimensional Phenomenological Model for RCCI Combustion Using Reaction Kinetics

2014-04-01
2014-01-1074
Homogeneous low temperature combustion is believed to be a promising approach to resolve the conflict of goals between high efficiency and low exhaust emissions. Disadvantageously for this kind of combustion, the whole process depends on chemical kinetics and thus is hard to control. Reactivity controlled combustion can help to overcome this difficulty. In the so-called RCCI (reactivity controlled compression ignition) combustion concept a small amount of pilot diesel that is injected directly into the combustion chamber ignites a highly diluted gasoline-air mixture. As the gasoline does not ignite without the diesel, the pilot injection timing and the ratio between diesel and gasoline can be used to control the combustion process. A phenomenological multi-zone model to predict RCCI combustion has been developed and validated against experimental and 3D-CFD data. The model captures the main physics governing ignition and combustion.
Technical Paper

A Triangulated Lagrangian Ignition Kernel Model with Detailed Kinetics for Modeling Spark Ignition with the G-Equation-Part I: Geometric Aspects

2018-04-03
2018-01-0195
Modeling ignition kernel development in spark ignition engines is crucial to capturing the sources of cyclic variability, both with RANS and LES simulations. Appropriate kernel modeling must ensure that energy transfer from the electrodes to the gas phase has the correct timing, rate and locations, until the flame surface is large enough to be represented on the mesh by the G-Equation level-set method. However, in most kernel models, geometric details driving kernel growth are missing: either because it is described as Lagrangian particles, or because its development is simplified, i.e., down to multiple spherical flames. This paper covers the geometric aspects of kernel development, which makes up the core of a Triangulated Lagrangian Ignition Kernel model. One (or multiple, if it restrikes) spark channel is initialized as a one-dimensional Lagrangian particle thread.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
X