Refine Your Search

Topic

Search Results

Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Journal Article

UV-visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend

2013-10-14
2013-01-2638
Detailed experimental information on the early stages of spark ignition process represent a substantial part for guiding the development of engines with higher efficiencies and reduced pollutant emissions. Flame kernel formation influences strongly combustion development inside the cylinder, especially for a direct injection spark ignition engine. This study presents the analysis of the evolution of spark-ignited flame kernels with detailed view upon cycle-to-cycle variations. Experiments are performed in a SI optical engine equipped with the cylinder head and injection system of a commercial turbocharged engine. Blend of commercial gasoline and butanol (40% by volume) is tested at stoichiometric and lean mixture conditions. Experiments are carried out at 2000 rpm through conventional tests (based on in-cylinder pressure measurements and exhaust emission analysis) and through optical diagnostics. In particular, UV-visible digital imaging and natural emission spectroscopy are applied.
Technical Paper

UV-Visible Imaging and Natural Emission Spectroscopy of Premixed Combustion in High Swirl Multi-Jets Compression Ignition Engine Fuelled with Diesel-Gasoline Blend

2012-09-10
2012-01-1723
One promising approach to reduce pollutants from compression ignition engines is the Partially-Premixed- Combustion in which engine out emissions can be reduced by promoting mixing of fuel and air prior to auto-ignition. A great interest for a premixed combustion regime is the investigation on fuels with different reactivity by blending diesel with lower cetane number and higher volatility fuels. In fact, fuels more resistant to auto-ignition give longer ignition delay that may enhance the fuel/air mixing prior to combustion. During the ignition delay period, the fuel spray atomizes into small droplets, vaporizes and mixes with air. As the piston moves towards TDC, as soon as the mixture temperature reaches the ignition point, instantaneously some pre-mixed amount of fuel and air ignites. The balance of fuel that does not burn in premixed combustion is consumed in the rate-controlled combustion phase, also known as diffusion combustion.
Journal Article

Split Injection in a DISI Engine Fuelled with Butanol and Gasoline Analyzed through Integrated Methodologies

2015-04-14
2015-01-0748
In this study, experiments were carried out in an optical single-cylinder Direct Injection Spark Ignition engine fuelled with n-butanol and gasoline, alternatively. The engine is equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). The head has four valves and a centrally located spark device with surface charge ignition. A conventional elongated hollow Bowditch piston is used and an optical crown, accommodating fused-silica window, is screwed onto it. The injector is side mounted and features 6 holes oriented to guide the jets towards the piston crown. During the experimental activity, the injection pressure was maintained at 100 bar for all conditions; the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions.
Technical Paper

Spectroscopic Investigation of Post-Injection Strategy Impact on Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Diesel/Butanol and Gasoline Blends

2013-09-08
2013-24-0066
In this paper, a high temporal resolution optical technique, based on the multi-wavelength UV-visible-near IR extinction spectroscopy, was applied at the exhaust of an automotive diesel engine to investigate the post-injection strategy impact on the fuel vapor. Experimental investigations were carried out using three fuels: commercial diesel (B5), a blend of 80% diesel with 20% by vol. of gasoline (G20) and a blend of 80% diesel with 20% by vol. of n-butanol (BU20). Experiments were performed at the engine speed of 2500rpm and 0.8MPa of brake mean effective pressure exploring two post-injection timings and two EGR rates. The optical diagnostic allowed evaluating, during the post-injection activation, the evolution of the fuel vapor in the engine exhaust line. The investigation was focused on the impact of post-injection strategy and fuel properties on the aptitude to produce hydrocarbon rich gaseous exhaust for the regeneration of diesel particulate trap (DPF).
Technical Paper

Plasma Assisted Ignition Effects on a DISI Engine Fueled with Gasoline and Butanol under Lean Conditions and with EGR

2016-04-05
2016-01-0710
Considering the generalized diversification of the energy mix, the use of alcohols as gasoline replacement is proposed as a viable option. Also, alternative control strategies for spark ignition engines (SI) such as lean operation and exhaust gas recirculation (EGR) are used on an ever wider scale for improving fuel economy and reducing the environmental impact of automotive engines. In order to increase the stability of these operating points, alternative ignition systems are currently investigated. Within this context, the present work deals about the use of plasma assisted ignition (PAI) in a direct injection (DI) SI engine under lean conditions and cooled EGR, with gasoline and n-butanol fueling. The PAI system was tested in an optically accessible single-cylinder DISI engine equipped with the head of a commercial turbocharged power unit with similar geometrical specifications (bore, stroke, compression ratio).
Technical Paper

Optical Properties Investigation of Alternative Fuels Containing Carbon-Based Nanostructures

2014-10-13
2014-01-2765
Liquids with stable suspensions of nanoscale materials are defined as nanofluids. As reported in recent scientific literature, a very small amount of suspended nanostructures has the potential to enhance the thermo physical, transport and radiative properties of the base fluid. One of the main applications of this technology is in the field of combustion and fuels. In fact, adding nanomaterials (such as metals, oxides, carbides, nitrides, or carbon-based nanostructures) to liquid fuels is able to enhance ignition and combustion. The focus of this research is to gain a fundamental understanding of the characteristics of a nanofluid fuel prepared using carbon nanoparticles (CNPs) and multi-walled carbon nanotubes (MWCNTs) dispersed in butanol. This study starts with the investigation of the optical properties of the mixtures. The transmission spectra of the nanofluids are measured in a wide wavelength range from UV (250 nm) to near IR (800 nm).
Technical Paper

Optical Investigation of the Effect on the Combustion Process of Butanol-Gasoline Blend in a PFI SI Boosted Engine

2011-09-11
2011-24-0057
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline was investigated. The experiments were performed in an optical ported fuel injection single-cylinder SI engine with an external boosting device. The engine was equipped with the head of a commercial SI turbocharged engine having the same geometrical specifications (bore, stroke and compression ratio). The effect of a blend of 20% of n-butanol and 80% of gasoline (BU20) on in-cylinder combustion process was investigated by cycle-resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered. Comparisons between the flame luminosity and the combustion pressure data were performed.
Technical Paper

Optical Investigation of Premixed Low-Temperature Combustion of Lighter Fuel Blends in Compression Ignition Engines

2011-09-11
2011-24-0045
Optical imaging and UV-visible detection of in-cylinder combustion phenomena were made in a single cylinder optically accessed high swirl multi-jets compression ignition engine operating with two different fuels and two EGR levels. A commercial diesel fuel and a lighter fuel blend of diesel (80%) and gasoline (20%), named G20, were tested for two injection pressures (70 and 140 MPa) and injection timings in the range 11 CAD BTDC to 5 CAD ATDC. The blend G20 has a lower cetane number, is more volatile and more resistant to the auto-ignition than diesel yielding an effect on the ignition delay and on the combustion performance. Instantaneous fuel injection rate, in-cylinder combustion pressure, NOx and smoke engine out emissions were measured. Taking into account the particular configuration of the engine, the efficiency was estimated by determining the area under the working engine cycle.
Technical Paper

Optical Investigation of Post-injection Strategy Impact on the Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Biodiesel Blends

2013-04-08
2013-01-1127
Multi-wavelength ultraviolet-visible extinction spectroscopy was applied to follow the evolution of fuel vapor injected by post-injection along the exhaust line of a common-rail turbocharged direct-injection diesel engine at moderate speed and load. The exhaust line was specifically designed and customized to allow the insertion of the optical access upstream of the Diesel Oxidation Catalyst. During the experimental campaign, the engine was fuelled with commercial B5 fuel and a B30 v/v blend of RME and ultra low sulfur diesel, monitoring emissions upstream of the catalyst and exhaust gas temperature across the catalyst. Tests were performed at different engine operating conditions with particular attention to moderate speed and load.
Journal Article

Optical Diagnostics of the Pollutant Formation in a CI Engine Operating with Diesel Fuel Blends

2011-06-09
2011-37-0003
To meet the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. Oxygenated fuels have showed a tendency to decrease internal combustion engine emissions. In the same time, advanced fuel injection modes can promote a further reduction of the pollutants at the exhaust without penalty for the combustion efficiency. One of the more interesting solutions is provided by the premixed low temperature combustion (LTC) mechanism jointly to lower-cetane, higher-volatility fuels. In this paper, to understand the role played by these factors on soot formation, cycle resolved visualization, UV-visible optical imaging and visible chemiluminescence were applied in an optically accessed high swirl multi-jets compression ignition engine. Combustion tests were carried out using three fuels: commercial diesel, a blend of 80% diesel with 20% gasoline (G20) and a blend of 80% diesel with 20% n-butanol (BU20).
Technical Paper

In-Cylinder Spectroscopic Measurements of Combustion Process in a SI Engine Fuelled with Butanol-Gasoline Blend

2013-04-08
2013-01-1318
In-cylinder optical diagnostic was applied to study butanol-gasoline blend combustion in a SI engine. Spark timing and fuel injection mode were changed to work in normal and knocking conditions. The experiments were realized in a single-cylinder ported fuel injection SI engine with an external boosting device. The engine worked like-stoichiometric mixture at 2000 rpm, medium boosting and wide open throttle. UV-visible natural emission spectroscopy allowed to follow the formation and the evolution of the main compounds and radical species that characterize the combustion process from the spark ignition until the exhaust. Particular interest was devoted to OH and CO₂* evolution, and to the spectral evidence of soot precursors due to fuel deposits burning. OH resulted the best marker for combustion both in normal and abnormal conditions.
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

High Spatial Resolution Visualization and Spectroscopic Investigation of the Flame Front Propagation in the Combustion Chamber of a Scooter Engine

2010-04-12
2010-01-0351
The match between the increasing performance demands and stringent requirements of emissions and fuel consumption reduction needs a strong evolution in the 2-wheel vehicle technology. In particular many steps forward should be taken for the optimization of modern small motorcycle and scooter at low engine speeds and low temperature start. To this aim, the detailed understandings of thermal and fluid-dynamic phenomena that occur in the combustion chamber are fundamental. In this work, experimental activities were realized in the combustion chamber of a single-cylinder 4-stroke optical engine. The engine was equipped with a four-valve head of a commercial scooter engine. High spatial resolution imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to firing of fuel deposition near the intake valves and on the piston surface were investigated.
Technical Paper

Fuel Injection Effect on In-cylinder Formation and Exhaust Emission of Particulate from a 4-Stroke Engine for 2-Wheel Vehicles

2010-04-12
2010-01-0354
The small engine for two-wheel vehicles has generally high possibility to be optimized at low speeds and high loads. In these conditions fuel consumption and pollutants emission should be reduced maintaining the performance levels. This optimization can be realized only improving the basic knowledge of the thermo-fluid dynamic phenomena occurring during the combustion process. It is known that, during the fuel injection phase in PFI SI engines, thin films of liquid fuel can form on the valves surface and on the cylinder walls. Successively the fuel films interact with the intake manifold and the combustion chamber gas flow. During the normal combustion process, it is possible to achieve gas temperature and mixture strength conditions that lead to fuel film ignition. This phenomenon can create diffusion-controlled flames that can persist well after the normal combustion event. These flames induce the emission of soot and unburned hydrocarbons.
Technical Paper

Flame Contour Analysis through UV-Visible Imaging during Regular and Abnormal Combustion in a DISI Engine

2015-04-14
2015-01-0754
Crank angle resolved imaging in the UV-visible spectral range was used to investigate flame front characteristics during normal combustion, surface ignition and light knock conditions. ‘Line of sight’ measurements provided information on local wrinkling: the evaluation was based on a statistical approach, with multiple frames taken at the same crank angle during consecutive cycles. This allowed the results during normal combustion to be representative for the specific operational conditions and to a good degree independent from the effects of cyclic variation. Abnormal combustion on the other hand, was investigated on a cycle-to-cycle basis, given the stochastic nature of such phenomena. The experimental trials were performed at fixed engine speed on an optically accessible direct injection spark ignition (DISI) engine equipped with the cylinder head of a four cylinder 16-valves commercial power unit.
Technical Paper

Experimental Study on the Spray Atomization of a Multi-hole Injector for Spark Ignition Engines Fuelled by Gasoline and n-Butanol

2014-10-13
2014-01-2743
Alcohols are largely used in spark-ignition (SI) engines as alternative fuels to gasoline. Particularly, the use of butanol meets growing interest due to its properties that are similar to gasoline, if compared with other alcohols. This paper aims to make a comparative analysis on the atomization process of gasoline and n-butanol fuel injected by a multi-hole injector nozzle for spark ignition engines. Phase Doppler Anemometry technique was applied to investigate the behavior of a spray emerging from a six-hole nozzle for direct injection spark ignition engine applications. Commercial gasoline and pure n-butanol were investigated. The fuels were injected at two pressures: namely at 5 and 10 MPa, in a test vessel at quiescent air conditions, ambient temperature and backpressure. Droplets diameter and velocity were estimated along the axis and on the edge direction of a jet through Phase Doppler Anemometry in order to provide useful information on the atomization process.
Technical Paper

Effect of Control Parameters in an Optical DISI Engine with Gasoline-Butanol Fueling

2015-09-01
2015-01-1944
Effects of n-butanol on the combustion process in a direct injection spark ignition engine were investigated through flame visualization and spectroscopy. An optically accessible engine was equipped for the trials with a commercial cylinder head and wall guided injection system. Injection pressure (100 bar) and engine speed (2000 rpm) were fixed while injection timing and duration were changed to realise stoichiometric and lean fuelling in homogenous charge conditions. Specifically, UV-visible digital imaging was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. UV-visible natural emission spectroscopy was applied to investigate the formation and the evolution of the main chemical compounds characterizing the spark ignition and combustion processes. Detailed image processing allowed to correlate the morphology and the local flame front curvature with thermodynamic data.
Technical Paper

Combustion Process Investigation in a Small SI Engine using Optical Diagnostics

2010-10-25
2010-01-2262
Nowadays an elevated number of two, three and four wheels vehicles circulating in the world-wide urban areas is equipped with Port Fuel Injection Spark Ignition (PFI SI) engines. Their technological level is high, but a further optimization is still possible, especially at low engine speed and high load. To this purpose, the scientific community is now focused on deepening the understanding of thermo fluid dynamic phenomena that takes place in this kind of engine: the final purpose is to find key points for the reduction in engine specific fuel consumption and exhaust emissions without a decrease in performance. In this work, the combustion process was investigated in an optically accessible single cylinder PFI SI engine. It was equipped with the head, injection device and exhaust line of a commercial small engine for two-wheel vehicles, it had the same geometrical characteristics in terms of bore, stroke and compression ratio.
Technical Paper

Characterization of Alcohol Sprays from Multi-Hole Injector for DISI Engines through PIV Technique

2015-04-14
2015-01-0927
The use of alcohols as alternative to gasoline for fuelling spark-ignition (SI) engines is widespread. Growing interest is paid for n-butanol because of its characteristics that are similar to gasoline. If compared with other alcohols, n-butanol has higher energy content and miscibility with gasoline, lower hygroscope and corrosive properties making it an attractive solution for gasoline replacement. Even if several studies have been conduced to characterize the n-butanol combustion within Spark Ignition engines, few data are available on atomization and spray behavior. This paper reports the results of an experimental investigation to characterize the velocity vector field of two fuel-sprays injected by a 6-hole nozzle for Direct Injection Spark Ignition (DISI) engine. 2D Mie-scattering and Particle Image Velocimetry (PIV) measurements were carried out in an optically accessible vessel at ambient temperature and pressure.
X