Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Technical Paper

Wall Impingement Process of a Multi-Hole GDI Spray: Experimental and Numerical Investigation

2012-04-16
2012-01-1266
The Direct Injection (DI) of gasoline in Spark Ignition (SI) engines is very attractive for fuel economy and performance improvements in spark ignition engines. Gasoline direct injection (GDI) offers the possibility of multi-mode operation, homogeneous and stratified charge, with benefits respect to conventional SI engines as higher compression ratio, zero pumping losses, control of the ignition process at very lean air-fuel mixture and good cold starting. The impingement of liquid fuel on the combustion chamber wall is generally one of the major drawbacks of GDI engines because its increasing of HC emissions and effects on the combustion process; in the wall guided engines an increasing attention is focusing on the fuel film deposits evolution and their role in the soot formation. Hence, the necessity of a detailed understanding of the spray-wall impingement process and its effects on the fuel distribution. The experimental results provide a fundamental data base for CFD predictions.
Technical Paper

Virtual Traffic Simulator for Connected and Automated Vehicles

2019-04-02
2019-01-0676
Connected and automated vehicle (CAV) technologies promise a substantial decrease in traffic accidents and traffic jams, and bring new opportunities for improving vehicle’s fuel economy. However, testing autonomous vehicles in a real world traffic environment is costly, and covering all corner cases is nearly impossible. Furthermore, it is very challenging to create a controlled real traffic environment that vehicle tests can be conducted repeatedly and compared fairly. With the capability of allowing testing more scenarios than those that would be possible with real world testing, simulations are deemed safer, more efficient, and more cost-effective. In this work, a full-scale simulation platform was developed to simulate the infrastructure, traffic, vehicle, powertrain, and their interactions. It is used as an effective tool to facilitate control algorithm development for improving CAV’s fuel economy in real world driving scenarios.
Technical Paper

Virtual Development of Control Coordinator for Engine and Aftertreatment Architecture Equipped with Diesel Fuel Burner

2023-08-28
2023-24-0103
Heating devices are effective technologies to strengthen emission robustness of AfterTreatment Systems (ATS) and to guarantee emission compliance in the new boundaries given by upcoming legislations. Moreover, they allow to manage the ATS warm-up independently from engine operating conditions, thereby reducing the need for specific combustion strategies. Within heating devices, an attractive solution to provide the required thermal power without mandating a 48V platform is the fuel burner. In this work, a model-based control coordinator to manage the interaction between engine, ATS and fuel burner device has been developed, virtually validated, and optimized. The control function features a burner model and a control logic to deliver the needed amount of thermal energy, while ensuring ATS hardware protection.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Varying the Polyurethane Foam Ratio for Better Acoustic Performance and Mass Savings

2011-05-17
2011-01-1736
Flexible molded polyurethane foams are widely used in automotive industry. As porous-elastic materials, they can be used as decoupler layers in conventional sound insulation constructions or as sound absorbers in vehicle trim parts. Flexible molded polyurethane foams are produced by reacting of liquid Isocyanate (Iso) with a liquid Polyol blend, catalysts, and other additives. Their acoustic performance can be changed by varying the mixing ratio, the weight proportion of two components: Iso and Polyol. Consequently, the sound insertion loss (IL) of barrier/foam constructions and acoustic absorption of a single foam layer will vary. In this paper, based on one industry standard flexible molded polyurethane foam process, the relationship between foam mixing ratio and foam acoustic performance is studied in terms of IL and sound absorption test results.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
Technical Paper

Utilizing Finite Element Tools to Model Objective Seat Comfort Results

2012-04-16
2012-01-0074
The comfort assessment of seats in the automotive industry has historically been accomplished by subjective ratings. This approach is expensive and time consuming since it involves multiple prototype seats and numerous people in supporting processes. In order to create a more efficient and robust method, objective metrics must be developed and utilized to establish measurable boundaries for seat performance. Objective measurements already widely accepted, such as IFD (Indentation Force Deflection) or CFD (Compression Force Deflection) [1], have significant shortcomings in defining seat comfort. The most obvious deficiency of these component level tests is that they only deal with a seats' foam rather than the system response. Consequently, these tests fail to take into account significant factors that affect seat comfort such as trim, suspension, attachments and other components.
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Technical Paper

Use of Vibration Signal for Diagnosis and Control of a Four-Cylinder Diesel Engine

2011-09-11
2011-24-0169
In order to meet the stricter and stricter emission regulations, cleaner combustion concepts for Diesel engines are being progressively introduced. These new combustion approaches often requires closed loop control systems with real time information about combustion quality. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine block vibration signal and several authors tried to reconstruct the pressure cycle on the basis of information coming from accelerometers mounted on engine block. This paper proposes a method, based on the analysis of the engine vibration signal, for the diagnosis of combustion process in a Diesel engine.
Technical Paper

Use of Renewable Oxygenated Fuels in Order to Reduce Particle Emissions from a GDI High Performance Engine

2011-04-12
2011-01-0628
The use of oxygenated and renewable fuels is nowadays a widespread means to reduce regulated pollutant emissions produced by internal combustion engines, as well as to reduce the greenhouse impact of transportation. Besides PM, NOx and HC emissions, also the size distribution of particles emitted at the engine exhaust represent meaningful information, considering its adverse effects on the environment and human health. In this work, the results of a comprehensive investigation on the combustion characteristics and the exhaust emissions of a GDI high performance engine, fuelled with pure bio-ethanol and European gasoline, are shown. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at different speed/load conditions and two fuel injection strategies were investigated: homogeneous charge mode and stratified charge mode.
Technical Paper

Use of Ionization Current to Estimate CO Rate in a Small 2-Stroke SI Engine

2015-09-06
2015-24-2525
This paper presents an experimental study on a 2-stroke SI engine, used on small portable tools for gardening or agriculture, aimed to identify possible correlations between parameters related to ionization current and air/fuel mixture richness, considering different fuels and spark plug wear. This, to realize a simple system to control the engine parameters and adapt them to engine aging and fuel type changing. The engine was fed with commercial gasoline, low octane number gasoline, alkylate gasoline and a blend of 80% gasoline and 20% ethanol. In all tests carried out with varying engine speed and spark advance the ionization signal was characterized by a single peak, resulting in the impossibility of distinguishing chemical and thermal ionization. All data collected were analyzed looking for correlations between all the available data of CO emissions and several characteristic parameters obtained from the ionization signal.
Technical Paper

Update on Gasoline Fuel Property and Gasoline Additives Impacts on Stochastic Preignition with Review of Global Market Gasoline Quality

2022-08-30
2022-01-1071
Stochastic Preignition (SPI) is an abnormal combustion phenomenon for internal combustion engines (ICE), which has been a significant impact to automotive companies developing high efficiency, turbocharged, direct fuel injection, spark ignited engines. It is becoming clearer what fuel properties are related to the cause of SPI, whether directly with fuel preparation in the cylinder, or mechanisms related to the deposit build-up which contributes to initial and follow-on SPI events. The purpose of this paper is to provide a summary of global market gasoline fuel properties with special attention given to properties and specific compounds from the fuel and fuel additives that can contribute to SPI and the deposit build-up in engines. Based on a review of the global fuel quality, it appears that the fuel quality has not caught up to meet the technology requirements for fuel economy from modern technology engines.
Technical Paper

Unregulated Emissions of Euro I, II and III Gasoline Cars

2005-09-11
2005-24-025
Unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), carbonylic compounds, benzene and particulate matter (PM) were quantified in exhausts of a vehicle fleet representative of in use gasoline cars. Emission factors were obtained during both cold and hot start driving cycles (from urban to motorway driving conditions). Carbonylic compounds were sampled by DNPH cartridges and analyzed by HPLC. Benzene and other light hydrocarbons were collected in bags and then analyzed by GC-FID. PAHs were trapped in XAD-2 cartridges and then analyzed by GC-MS. PM was sampled by using the gravimetric procedure required for diesel cars. The effect of technology is significant with respect to regulated and unregulated emissions but different emissive behavior was found by varying the driving cycles. Cold start has a major influence on hydrocarbon emissions (included unregulated ones). This experimental work was carried out within the framework of the EU Artemis project.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Journal Article

UV-visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend

2013-10-14
2013-01-2638
Detailed experimental information on the early stages of spark ignition process represent a substantial part for guiding the development of engines with higher efficiencies and reduced pollutant emissions. Flame kernel formation influences strongly combustion development inside the cylinder, especially for a direct injection spark ignition engine. This study presents the analysis of the evolution of spark-ignited flame kernels with detailed view upon cycle-to-cycle variations. Experiments are performed in a SI optical engine equipped with the cylinder head and injection system of a commercial turbocharged engine. Blend of commercial gasoline and butanol (40% by volume) is tested at stoichiometric and lean mixture conditions. Experiments are carried out at 2000 rpm through conventional tests (based on in-cylinder pressure measurements and exhaust emission analysis) and through optical diagnostics. In particular, UV-visible digital imaging and natural emission spectroscopy are applied.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

2011-09-11
2011-24-0061
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Technical Paper

UV-Visible Imaging of PCCI Engine Running with Ethanol/Diesel Fuel

2012-04-16
2012-01-1238
Premixed charge compression ignition (PCCI) has been shown to be a promising strategy to simultaneously reduce emissions while realizing improved fuel economy. PCCI combustion uses high levels of pre-combustion mixing to lower both NOx and soot emissions by ensuring low equivalence ratio and low flame temperatures. The high level of pre-combustion mixing results in a primarily kinetics controlled combustion process. In this work, optical diagnostics have been applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat ethanol has been performed in the intake manifold. The engine run in continuous way at 1500 rpm engine speed and commercial diesel fuel has been injected into the cylinder. The PCCI combustion has been analyzed by means of UV- Visible digital imaging and the mixing process, the autoignition of the charge have been investigated.
Technical Paper

UV-Visible Imaging and Natural Emission Spectroscopy of Premixed Combustion in High Swirl Multi-Jets Compression Ignition Engine Fuelled with Diesel-Gasoline Blend

2012-09-10
2012-01-1723
One promising approach to reduce pollutants from compression ignition engines is the Partially-Premixed- Combustion in which engine out emissions can be reduced by promoting mixing of fuel and air prior to auto-ignition. A great interest for a premixed combustion regime is the investigation on fuels with different reactivity by blending diesel with lower cetane number and higher volatility fuels. In fact, fuels more resistant to auto-ignition give longer ignition delay that may enhance the fuel/air mixing prior to combustion. During the ignition delay period, the fuel spray atomizes into small droplets, vaporizes and mixes with air. As the piston moves towards TDC, as soon as the mixture temperature reaches the ignition point, instantaneously some pre-mixed amount of fuel and air ignites. The balance of fuel that does not burn in premixed combustion is consumed in the rate-controlled combustion phase, also known as diffusion combustion.
X