Refine Your Search

Topic

Author

Search Results

Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Study of a Two-Degree-of-Freedom Exhaust System

1990-02-01
900164
An investigation was conducted into pressure pulsation in the exhaust port, which greatly affects volumetric efficiency and engine performance. From experiments using a single blow-down generator, it was established that the amplitude of the pressure pulsation increases as the manifold branch is lengthened and that large negative pressure synchronized with the timing of valve overlap can be obtained if a proper branch length is used. The performance of a 2ℓ test engine was optimized by varying the length of both the manifold branches and front pipe forks. It was found that whereas front pipe fork length affects engine performance over only a narrow range of engine speed, optimizing manifold branch length results in a considerable improvement over a wide engine speed range. In the course of optimizing the exhaust pipe manifold length of this two-degree-of-freedom exhaust system, abnormal exhaust noises were emitted at specific engine speeds during deceleration.
Technical Paper

Smart Algorithm for a Tire Pneumatic Pressure Monitor Embedded in ABS Program

1998-02-23
980237
This paper describes methods to attain a low cost tire pneumatic pressure monitor. We already established two kinds of algorithms for indirect detection of under-inflated tires without requiring any air pressure sensors. One method is to use a disturbance observer and the least mean square method. The other method is to compare the loaded radii of the tires. We have developed an algorithm that reduces the number of calculations needed, while maintaining a relatively small program size, and realized a tire pneumatic pressure monitor that does not require any hardware cost, by incorporating it into the program for the antilock brake system (ABS).
Technical Paper

Occupant Kinematics and Estimated Effectiveness of Side Airbags in Pole Side Impacts Using a Human FE Model with Internal Organs

2008-11-03
2008-22-0015
When a car collides against a pole-like obstacle, the deformation pattern of the vehicle body-side tends to extend to its upper region. A possible consequence is an increase of loading to the occupant thorax. Many studies have been conducted to understand human thoracic responses to lateral loading, and injury criteria have been developed based on the results. However, injury mechanisms, especially those of internal organs, are not well understood. A human body FE model was used in this study to simulate occupant kinematics in a pole side impact. Internal organ parts were introduced into the torso model, including their geometric features, material properties and connections with other tissues. The mechanical responses of the model were validated against PMHS data in the literature. Although injury criterion for each organ has not been established, pressure level and its changes can be estimated from the organ models.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Technical Paper

Low Frequency Airborne Panel Contribution Analysis and Vehicle Body Sensitivity to Exhaust Nnoise

2017-06-05
2017-01-1865
The tendency for car engines to reduce the cylinder number and increase the specific torque at low rpm has led to significantly higher levels of low frequency pulsation from the exhaust tailpipe. This is a challenge for exhaust system design, and equally for body design and vehicle integration. The low frequency panel noise contributions were identified using pressure transmissibility and operational sound pressure on the exterior. For this the body was divided into patches. For all patches the pressure transmissibility across the body panels into the interior was measured as well as the sound field over the entire surface of the vehicle body. The panel contributions, the pressure distribution and transmissibility distribution information were combined with acoustic modal analysis in the cabin, providing a better understanding of the airborne transfer.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Improvement of PN Filtration Efficiency of Coated GPF – Study of Improvement of PN Filtration Efficiency and Reduction of Pressure Drop

2023-09-29
2023-32-0124
This research aimed to improve the PN filtration efficiency of a catalyst coated gasoline particulate filter (cGPF) to meet the next generation of emissions regulations for internal combustion engines. This paper proposes a concept that improves the PN filtration performance while maintaining low pressure drop by forming a thin PM trap layer on the surface of the cGPF substrate. The design guidelines for the coating particle size and coating amount of the PM trap layer were investigated, and actual manufacturing issues were also identified. The validity of this concept and guidelines was then verified on an actual vehicle.
Technical Paper

Ignition Characteristics of Hydrogen Jets in an Argon-Oxygen Atmosphere

2012-04-16
2012-01-1312
The ignition delay and combustion characteristics of hydrogen jets in an argon-oxygen atmosphere were investigated to provide fundamental data for operating an argon-circulated hydrogen internal combustion engine. Experiments were conducted in a constant-volume combustion vessel to study the effects of ambient temperature, ambient pressure, oxygen concentration and injection pressure on a pre-burning system. The hydrogen-jet penetration and flame were also investigated based on high-speed shadowgraph images. The experimental results indicated that the ignition delay (τ) increases as the ambient temperature (Ti) decreases, similar to the results obtained in an air atmosphere. The heat-release rate results also exhibited similar trends.
Technical Paper

Hot Gas Heater System

2003-03-03
2003-01-0737
As a result of recent improvements in engine efficiency, vehicle heating performance has decreased and the demand for auxiliary heat sources is increasing. To help meet this need, we have developed an auxiliary heat system known as the “Hot Gas Heater”. The Hot Gas Heater uses components common to the vehicle air-conditioning system that are not used during winter. However, there are some concerns with this system. In this paper we describe our solutions to these problems. We reduced gas flow noise through multi-stage pressure reduction, and prevented fogging by adding “water retention memory” and “evaporator outlet air temperature control” functions to the system. As a further benefit, we developed a New Accumulator Cycle that moves the cooling cycle accumulator tank to the high-pressure side.
Technical Paper

High-Speed Seatbelt Pretensioner Loading of the Abdomen

2006-11-06
2006-22-0002
This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused.
Technical Paper

Experimental Analysis of Acoustic Coupling Vibration of Wheel and Suspension Vibration on Tire Cavity Resonance

2007-05-15
2007-01-2345
It is difficult to improve tire cavity noise since the pressure of cavity resonance acts as a compelling force, and its low damping and high gain characteristics dominate the vibration of both the suspension and body. For this reason, the analysis described in this article aimed to clarify the design factors involved and to improve this phenomenon at the source. This was accomplished by investigating the acoustic coupling vibration mode of the wheel, which is the component that transmits the pressure of cavity resonance at first. In addition, the vibration characteristic of suspension was investigated also. A speaker-equipped sound pressure generator inside the tire and wheel assembly was developed and used to infer that wheel vibration under cavity resonance is a forced vibration mode with respect to the cavity resonance pressure distribution, not an eigenvalue mode, and this phenomenon may therefore be improved by optimizing the out-of-plane torsional stiffness of the disk.
Technical Paper

Effects of Next-Generation Bio Diesel Fuel on the Engine Performance

2015-09-01
2015-01-1928
Hydrotreated Vegetable Oil (HVO) and Sugar-to-Diesel as next-generation bio diesel fuels consist of normal and iso-paraffin, and those carbon number of paraffinic hydrocarbons and distillation characteristics are narrow distribution. These characteristics would cause to deteriorate the evaporation and mixture with air and fuel. Therefore, in this study, the effects of normal paraffin (Tridecane) and iso-paraffin (HVO) on emission characteristics and cold start performance in a diesel engine were investigated by engine dynamometer tests, cold start vehicle tests, and spray analyzer tests. From the results, it was found that normal and iso-paraffin are beneficial for HC, CO, Smoke emission reduction. In addition, isomerization is effective for the diesel engine to fulfill cold start performance, since normal paraffin of narrow carbon number distribution became solidified under low temperature and high pressure condition in a common rail system.
Technical Paper

Effects of Ambient O2 Concentration and Pressure on Combustion Characteristics of Diesel Spray

2015-09-01
2015-01-1831
Effect of the ambient O2 concentration and pressure on the spray combustion characteristics of diesel fuel was experimentally examined using a high-temperature, high-pressure combustion vessel. The sequential images were captured by using a high-speed color video camera and were analyzed using the two color method to quantify the temporal variation of the soot temperature and KL factor. Based on a series of systematic experiments, it is confirmed that O2 concentration is the dominant factor affecting both the ignition delay and combustion period. The volumetric fraction of O2 in ambient air has great effect on flame temperature and NOx emission, however ambient pressure has little effect on both values. On the contrary both of the volumetric fraction of O2 in ambient air and the ambient pressure have large effect on soot production.
Technical Paper

Effect of Sulfur-free and Aromatics-free Diesel Fuel on Vehicle Exhaust Emissions using Simultaneous PM and NOx Reduction System

2003-05-19
2003-01-1865
A new diesel after-treatment system, Diesel Particulate and NOx Reduction System (DPNR), is being developed for reducing PM and NOx emissions. We examined the effects of sulfur content in lubricants on exhaust NOx emission from DPNR catalyst, and examined the PM reduction ability using sulfur-free and aromatics-free fuel. After vehicle durability testing of 40,000 km without forced regeneration of PM and sulfur poisoning on DPNR catalyst, deterioration of DPNR was lower than using higher sulfur contents in fuel and oil. In addition to decreasing fuel sulfur, decreasing oil sulfur was also effective to maintain high NOx conversion efficiency. Although the catalyst was poisoned by sulfur in the lubricants, the influence of oil sulfur poisoning on the catalyst was lower than fuel sulfur poisoning. On the other hand, engine out PM emissions decreased by 70 % because of aromatics-free fuel. The pressure drop of DPNR did not increase during the 40,000 km vehicle durability test.
Technical Paper

Development of a New DPNR Catalyst

2004-03-08
2004-01-0578
We, at Toyota, have been working to develop a new DPNR (Diesel Particulate-NOx Reduction) system to decrease both PM and NOx emissions by combining the NOx storage-reduction catalyst for direct injection gasoline engines with the most advanced engine control technologies. The purpose of the DPNR catalyst is to decrease PM and NOx in order to purify automotive exhaust gas. To reduce PM emissions, the PM trapping rate and PM oxidizing performance must be improved. Since the deposition of PM increases the pressure drop across the catalytic converter, it should also be suppressed. To attain these objectives, we have developed a new DPNR catalyst by the adoption of a new porous substrate structure and the improvement of the catalyst coating technique. The new DPNR catalyst will be mounted on the Avensis for commercial use in the European market.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Technical Paper

Development of a Mechanical Pilot Injection Device for Automotive Diesel Engines

1989-09-01
891962
It is well known that pilot injection is an effective method of reducing diesel knock noise during idling, but no actual system has as yet been commercially produced. With the objective of developing a practicable pilot injection device, simulations were conducted of various simple mechanisms in order to determine the best specifications and analyze the fuel injection characteristics. Based on these results, a chamber expansion type pilot injection device, which enables the injection pump pressure chamber volume to be increased at a given moment during the fuel compression stroke, has been developed and has been found to remarkably decrease knock noise during cold idling. An investigation into the effects of this device on output power, exhaust emissions, cold startability and durability revealed that it is eminently suitable for practical application.
Technical Paper

Development of Low Pressure and High Performance GPF Catalyst

2018-04-03
2018-01-1261
Awareness of environmental protection with respect to the particulate number (PN) in the exhaust emissions of gasoline direct injection (GDI) engine vehicles has increased. In order to decrease the emission of particulate matter (PM), suppressing emissions by improving engine combustion, and/or filtering PM with a gasoline particulate filter (GPF) is effective. This paper describes the improvement of the coated GPF to reduce pressure drop while securing three-way performance and PN filtration efficiency. It was necessary to load a certain amount of washcoat on the GPF to add the three-way function, but this led to an increase in pressure drop that affected engine power. The pressure drop was influenced by the gas permeation properties of the filter wall.
Technical Paper

Development of Aerodynamic Drag Reduction around Rear Wheel

2021-04-06
2021-01-0962
Due to new CO2 regulations and increasing demand for improved fuel economy, reducing aerodynamic drag has become more critical. Aerodynamic drag at the rear of the vehicle accounts for approximately 40% of overall aerodynamic drag due to low base pressure in the wake region. Many studies have focused on the wake region structure and shown that drag reduction modifications such as boattailing the rear end and sharpening the rear edges of the vehicle are effective. Despite optimization using such modifications, recent improvements in the aerodynamic drag coefficient (Cd) seem to have plateaued. One reason for this is the fact that vehicle design is oriented toward style and practicality. Hence, maintaining flexibility of design is crucial to the development of further drag reduction modifications. The purpose of this study was to devise a modification to reduce rear drag without imposing additional design restrictions on the upper body.
X