Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Properties of a Newly Developed Galvannealed Steel Sheet with Modified Surface

2011-04-12
2011-01-1056
Since galvannealed steel sheets (GA) are widely used for automobile body parts, they require excellent features such as press formability, resistant spot weldability and phosphatability. We have focused on improving the press formability of GA since the late 1990s, and have developed a new type of surface modified GA which has a lower friction coefficient than conventional GA. The developed surface modified GA based on mild steel is now used by all automakers in Japan, especially for those parts such as side panels that are difficult to form. This paper describes the features of the surface modified GA.
Technical Paper

Effect of Mechanical Properties and Forming Conditions on Outer Panel Performances of High Strength Steel Sheets

2016-04-05
2016-01-0355
Although reduction of the thickness of materials used in the automobile body is important for weight reduction, reducing the thickness of outer panels deteriorates dent resistance and surface distortion. To investigate the potential for weight reduction, the factors which influence the surface distortion and dent resistance properties were evaluated quantitatively with the aim of securing these properties. The materials used in these experiments were a tensile strength (TS) 340MPa grade bake hardenable (BH) steel sheet, which is often used in door outers, and a TS 440MPa grade BH steel sheet for outer panels. Surface distortion increases as a result of higher yield point (YP). It is possible to suppress the increase in surface distortion by increasing the blank holding force (BHF) in press forming. However, because this reduces the BHF range to the forming limit, application of low YP material is considered to be more advantageous for suppressing surface distortion.
Technical Paper

A Study of Sheet Hydro-forming Using High Strength Steel Sheets

2006-04-03
2006-01-0546
Sheet hydro-forming was applied to hydro-form a door outer panel using different steel grades. The effect of mechanical properties and the forming conditions on panel properties such as thickness profile and cross-sectional shape accuracy were investigated by both experimental sheet hydro-forming and FEM forming analysis. 590MPa T.S. steel grade was successfully formed with improved dent resistance compared to the conventional 340MPa T.S. steel grade. On the other hand, the results of the FEM forming process analysis showed that the pre-forming conditions were important in controlling the fracture formation during forming and to improve dent resistance, which successfully led to the best forming condition.
X