Refine Your Search

Topic

Author

Search Results

Technical Paper

Unifying Value Methodology and Robust Design to Achieve Design for Six Sigma

2006-04-03
2006-01-0998
The concept of product or system function is considered as described in the Taguchi System of Quality Engineering. The importance of transfer functions is also discussed and a review of conventional value analysis techniques is given. This paper proposes a combination of the principles of robust design and value methodology to enable on-target functionality and direct cost allocation early in the product development process. The discussion on integration of value analysis principles in robust design methodology is provided considering the six sigma environment.
Technical Paper

U.S. Automotive Corrosion Trends Over the Past Decade

1995-02-01
950375
Since 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area. The purpose of these surveys is to track industry wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the five surveys conducted to date.
Technical Paper

Time Determinism and Semantics Preservation in the Implementation of Distributed Functions over FlexRay

2010-04-12
2010-01-0452
Future automobiles are required to support an increasing number of complex, distributed functions such as active safety and X-by-wire. Because of safety concerns and the need to deliver correct designs in a short time, system properties should be verified in advance on function models, by simulation or model checking. To ensure that the properties still hold for the final deployed system, the implementation of the models into tasks and communication messages should preserve properties of the model, or in general, its semantics. FlexRay offers the possibility of deterministic communication and can be used to define distributed implementations that are provably equivalent to synchronous reactive models like those created from Simulink. However, the low level communication layers and the FlexRay schedule must be carefully designed to ensure the preservation of communication flows and functional outputs.
Journal Article

The Windshear Rolling Road Wind Tunnel

2012-04-16
2012-01-0300
The Windshear Rolling Road Wind Tunnel in Concord, North Carolina, is a full-scale commercial wind tunnel conceived primarily as a facility to serve the various motorsports communities, although it has already expanded beyond that base into production car and truck testing. The wind tunnel is a 3/4-open-jet, closed-return design with a 16.7 m₂ nozzle, a wide-belt moving ground plane, and a top speed of 80 m/s (180 mph). This paper describes the project history and design philosophy of the wind tunnel, commissioning results, and an overview of the force measurement methods on the wide-belt rolling road. Some results of a recently completed correlation program are presented, along with performance validation results that include repeatability and reproducibility as well as an assessment of boundary corrections.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Journal Article

The Honda R&D Americas Scale Model Wind Tunnel

2012-04-16
2012-01-0301
This paper describes the new Honda R&D Americas Scale Model Wind Tunnel (SWT). To help address Honda's ongoing need to improve fuel economy, reduce the driving force of a vehicle, and decrease product development time, the wind tunnel was developed and implemented to achieve high accuracy aerodynamic predictions for product development and a significantly improved capability for vehicle aerodynamics research. The SWT can accommodate model scales up to 50%. The ¾-open jet test section has a top speed of 250 km/h, a 5-belt moving ground plane with a long center belt for proper wake simulation, a test section designed specifically for very low static pressure gradient, three separate dynamic pressure measurement systems for state-of-the-art blockage corrections, and an overhead traverse for specialized measurement activities. This paper describes the decision process that led to the SWT, key commissioning results, and performance validation results with models installed.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Technical Paper

Sound Analysis Method for Warble Noise in Electric Actuators

2019-06-05
2019-01-1521
Multiple automotive applications exist for small electric motors that are activated by vehicle occupants for various functions such as window lifts and seat adjusters. For such a motor to be described as high quality, not only should the sound it produces be low in amplitude, but it also needs to be free from pulsations and variations that might occur during its (otherwise) steady-state operation. If a motor’s sound contains pulsations or variations between 2 and 8 cycles per second, the variation is described as warble. To establish performance targets for warble noise at both the vehicle and component level a way to measure and quantify the warble noise must be established. Building on existing sound quality metrics such as loudness and pitch variation, a method is established by which processed sound data is put through a secondary operation of Fourier analysis.
Journal Article

Scania’s New CD7 Climatic Wind Tunnel Facility for Heavy Trucks and Buses

2016-04-05
2016-01-1614
Scania AB has opened the new CD7 climatic wind tunnel test facility, located at the Scania Technical Center in Södertälje, Sweden. This facility is designed for product development testing of heavy trucks and buses in a range of controllable environments. Having this unique test environment at the main development center enables Scania to test its vehicles in a controlled repeatable environment year round, improving lead times from design to production, producing higher quality and more reliable vehicles, and significantly improves the capability for large vehicle performance research. This state-of-the-art facility provides environmental conditions from -35°C to 50°C with humidity control from 5 to 95 percent. The 13 m2 nozzle wind tunnel can produce wind speeds up to 100 km/h. The dynamometer is rated at 800 kW for the rear axle and 150 kW for the front axle, which also has ±10° yaw capability.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Journal Article

Progress in Aeroacoustic and Climatic Wind Tunnels for Automotive Wind Noise and Acoustic Testing

2013-04-08
2013-01-1352
There has been significant progress in developing test facilities for automotive wind noise and automotive components since the early 1990s. The test technology is critical to the development of modern vehicles, and essentially every major automotive manufacturer owns and operates their own aeroacoustic wind tunnel, or has rental access to one and conducts a significant amount of wind noise testing. The current status for climatic wind tunnels is that many new CWTs are being defined with acoustic test requirements. These test capabilities in AAWTs and CWTs will continue to enable the development of vehicles with better wind noise attributes, fewer problems with sunroof ‘booming’, and lower noise levels for HVAC and auxiliary systems. In the future, it is expected that the test demand for AAWTs and CWTs with low acoustic background noise will continue to increase as customers expect better automotive products, especially across more of the product line.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Technical Paper

Overview - Painted Aluminum Wheels

1986-12-08
862022
This paper discusses the recent growth in aluminum wheel popularity and the problems associated with maintaining the wheel's appearance and corrosion protection. The various options in wheel coatings are then described as well as the adverse wheel environment. Finally, the variables affecting wheel corrosion resistance are explained and the testing that is undertaken to evaluate the performance characteristics of the wheel coating.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Journal Article

Methods and Tools for Calculating the Flexibility of Automotive HW/SW Architectures

2012-04-16
2012-01-0005
To cope with the increasing number of advanced features (e.g., smart-phone integration and side-blind zone alert.) being deployed in vehicles, automotive manufacturers are designing flexible hardware architectures which can accommodate increasing feature content with as fewer as possible hardware changes so as to keep future costs down. In this paper, we propose a formal and quantitative definition of flexibility, a related methodology and a tool flow aimed at maximizing the flexibility of an automotive hardware architecture with respect to the features that are of greater importance to the designer. We define flexibility as the ability of an architecture to accommodate future changes in features with no changes in hardware (no addition/replacement of processors, buses, or memories). We utilize an optimization framework based on mixed integer linear programming (MILP) which computes the flexibility of the architecture while guaranteeing performance and safety requirements.
X