Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise: Spectral and Geometric Dependence

The in-cabin sound pressure level response of a vehicle in yawed wind conditions can differ significantly between the smooth flow conditions of the aeroacoustic wind tunnel and the higher turbulence, transient flow conditions experienced on the road. Previous research has shown that under low turbulence conditions there is close agreement between the variation with yaw of in-cabin sound pressure level on the road and in the wind tunnel. However, under transient conditions, sound pressure levels on the road were found to show a smaller increase due to yaw than predicted by the wind tunnel, specifically near the leeward sideglass region. The research presented here investigates the links between transient flow and aeroacoustics. The effect of small geometry changes upon the aeroacoustic response of the vehicle has been investigated.
Technical Paper

The Effects of Unsteady Flow Conditions on Vehicle in Cabin and External Noise Generation

A vehicle driving on the road experiences unsteady flow conditions which are not generally reproduced in the development environment. This paper investigates the potential importance of this difference to aeroacoustics and hence to occupant perception and proposes a methodology to enable better ranking of designs by taking account of wind noise modulation. Two approaches of reproducing the effects of unsteady wind on aeroacoustics were investigated: an active wind tunnel Turbulence Generation System (TGS) and a quasi-steady approach based on measurements at a series of fixed yaw angles. A number of tools were used to investigate the onset flow and its impacts, including roof-mounted probe, acoustic heads and surface microphones. External noise measurements help to reveal the response of separate exterior noise sources to yaw.
Journal Article

The Effect of Passive Base Ventilation on the Aerodynamic Drag of a Generic SUV Vehicle

Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Design and Comparative Study of Yaw Rate Control Systems with Various Actuators

The vehicle dynamics control systems are traditionally based upon utilizing wheel brakes as actuators. However, there has been recently strong interest in the automotive industry for introduction of other vehicle dynamics actuators, in order to improve the overall vehicle stability, responsiveness, and agility features. This paper considers various actuators such as active rear and central differentials and active front and rear steering, and proposes design of related yaw rate control systems. Different control subsystems such as reference model, feedback and feedforward control, allocation algorithm, and time-varying controller limit are discussed. The designed control systems are verified and compared by computer simulation for double lane change and slalom maneuvers.
Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Technical Paper

Assessment of a Vehicle's Transient Aerodynamic Response

A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment. The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.