Refine Your Search

Topic

Search Results

Journal Article

Water Ingress Analysis and Splash Protection Evaluation for Vehicle Wading using Non-Classical CFD Simulation

2017-03-28
2017-01-1327
Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
Technical Paper

Visualisation of Roof Bar Noise Sources through the Use of Acoustic Beamforming and Computational Aeroacoustics

2023-04-11
2023-01-0840
The reduction in wind noise is increasingly important to vehicle designers as overall vehicle refinement increases. Customers often fit accessories such as roof bars to vehicles, with the aerodynamic interaction of these components generating aeroacoustic noise sources. These are often tonal in nature and of particular annoyance to occupants. Sensors for automated driving fitted to future vehicles may also have a similar detrimental effect on vehicle refinement. Therefore, careful design of such components is important to minimise dissatisfaction. This paper presents the combined application of acoustic beamforming in a full-scale aeroacoustic wind tunnel and the use of a Lattice Boltzmann Method CFD code to characterise the aeroacoustic performance of a roof bar design when fitted to a production vehicle.
Journal Article

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise: Spectral and Geometric Dependence

2011-04-12
2011-01-0159
The in-cabin sound pressure level response of a vehicle in yawed wind conditions can differ significantly between the smooth flow conditions of the aeroacoustic wind tunnel and the higher turbulence, transient flow conditions experienced on the road. Previous research has shown that under low turbulence conditions there is close agreement between the variation with yaw of in-cabin sound pressure level on the road and in the wind tunnel. However, under transient conditions, sound pressure levels on the road were found to show a smaller increase due to yaw than predicted by the wind tunnel, specifically near the leeward sideglass region. The research presented here investigates the links between transient flow and aeroacoustics. The effect of small geometry changes upon the aeroacoustic response of the vehicle has been investigated.
Technical Paper

The Effects of Unsteady On-Road Flow Conditions on Cabin Noise

2010-04-12
2010-01-0289
At higher speeds aerodynamic noise tends to dominate the overall noise inside the passenger compartment. Large-scale turbulent conditions experienced on the road can generate different noise characteristics from those under steady-state conditions experienced in an acoustic wind tunnel. The objective of this research is to assess the relationship between on-road flow conditions and the sound pressure level in the cabin. This research, covering links between the unsteady airflow around the vehicle and aeroacoustic effects, is a natural progression from previous aerodynamic studies. On-road testing was undertaken using a current production vehicle equipped with a mobile data logging system. Testing was carried out on major roads at typical highway speeds, where wind noise is very significant. Of particular interest are high-yaw conditions, which can lead to a blustering phenomenon.
Technical Paper

The Effects of Unsteady Flow Conditions on Vehicle in Cabin and External Noise Generation

2015-04-14
2015-01-1555
A vehicle driving on the road experiences unsteady flow conditions which are not generally reproduced in the development environment. This paper investigates the potential importance of this difference to aeroacoustics and hence to occupant perception and proposes a methodology to enable better ranking of designs by taking account of wind noise modulation. Two approaches of reproducing the effects of unsteady wind on aeroacoustics were investigated: an active wind tunnel Turbulence Generation System (TGS) and a quasi-steady approach based on measurements at a series of fixed yaw angles. A number of tools were used to investigate the onset flow and its impacts, including roof-mounted probe, acoustic heads and surface microphones. External noise measurements help to reveal the response of separate exterior noise sources to yaw.
Technical Paper

SEA Wind Noise Load Case for Ranking Vehicle Form Changes

2011-05-17
2011-01-1707
Vehicle manufacturers demand early design assessment of vehicle wind noise attribute so as to eliminate engineering waste induced by late design changes. Vehicle wind noise attribute can be simulated with a Statistical Energy Analysis (SEA) model using exterior surface turbulence pressure on the vehicle greenhouse panel as the wind noise load. One important application of SEA wind noise model is the wind noise assessment for vehicle form design. Vehicle form optimization for wind noise plays an important role in lightweight vehicle architecture, since that reduction in the wind noise load will compensate the loss of vehicle body acoustic attenuation caused by down-gauge glazing and body panels. In this paper, two SEA wind noise load cases currently used in vehicle SEA wind noise modeling have been analyzed and evaluated against vehicle measurements.
Technical Paper

SEA Modeling of Vehicle Wind Noise and Load Case Representation

2007-05-15
2007-01-2304
Vehicle wind noise is becoming increasingly important to customer satisfaction. Early wind noise assessment is critical to get things right during the early design phase. In this paper, SEA modeling technique is used to predict vehicle interior noise caused by the exterior turbulence. Measured surface turbulence pressures over vehicle greenhouse panels are applied as wind noise load. SEA representation of wind noise load case is investigated. It has been found that current SEA wind noise load case over-estimates at frequencies below window glass coincident frequency. A new concept of noise source pole index is introduced and a new wind noise load coupling has been developed. Comparison with vehicle wind tunnel measurements shows that the proposed load case significantly improved prediction accuracy.
Technical Paper

Recent Advances in Powertrain Sound Quality Hardware Tuning Devices and Perspectives on Future Advances

2009-05-19
2009-01-2192
Over the past decade there have been significant advances made in the technology used to engineer Powertrain Sound Quality into automobiles. These have included exhaust system technologies incorporating active and semi-active valves, intake system technologies involving passive and direct feedback devices, and technologies aimed at tuning the structure-borne content of vehicle interior sound. All of these technologies have been deployed to complement the traditional control of NVH issues through the enhancement of Powertrain Sound Quality. The aim of this paper is to provide an historical review of the recent industry-wide advances made in these technologies and to provide the author's perspective on what issues have been addressed and what opportunities have been delivered.
Technical Paper

Prediction of Vehicle Interior Sound Pressure Distribution with SEA

2011-05-17
2011-01-1705
Statistical Energy Analysis (SEA) is the standard analytical tool for predicting vehicle acoustic and vibration responses at high frequencies. SEA is commonly used to obtain the interior Sound Pressure Level (SPL) due to each individual noise or vibration source and to determine the contribution to the interior noise through each dominant transfer path. This supports cascading vehicle noise and vibration targets and early evaluation of the vehicle design to effectively meet NVH targets with optimized cost and weight. A common misconception is that SEA is only capable of predicting a general average interior SPL for the entire vehicle cabin and that the differences between different locations such as driver's ear, rear passenger's ear, lower interior points, etc., in the vehicle cannot be analytically determined by an SEA model.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Technical Paper

Measurement of Exterior Surface Pressures and Interior Cabin Noise in Response to Vehicle Form Changes

2011-05-17
2011-01-1618
Automotive manufactures demand early assessment of vehicle form design against wind noise attribute to eliminate any engineering waste induced by late design changes. To achieve such an assessment, it is necessary to determine a measurable quantity which is able to represent vehicle form changes, and to understand the relationship between the quantity and vehicle interior cabin noise. This paper reports experimental measurements of vehicle exterior surface pressure and the interior cabin noise level in response to the change of exterior rear view mirror shape. Measurements show that exterior surface pressure on vehicle greenhouse panel is a primary factor of wind noise load to the interior cabin noise; they can be used in preliminary wind noise ranking. Care should be taken when using them in ranking vehicle form wind noise performance. It has been observed that a change in surface pressure on the front side window does not necessarily lead to a change in the interior cabin noise.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Journal Article

Evaluation of the Aerodynamic and Aeroacoustic Response of a Vehicle to Transient Flow Conditions

2013-04-08
2013-01-1250
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. Unsteady effects occurring in the sideglass region of a vehicle are particularly relevant to wind noise. This is a region close to the driver and dominated by separated flow structures from the A-pillar and door mirrors, which are sensitive to unsteadiness in the onset flow. Since the sideglass region is of particular aeroacoustic importance, the paper seeks to determine what impact these unsteady effects have on the sources of aeroacoustic noise as measured inside the passenger compartment, in addition to the flow structures in this region. Data presented were obtained during on-road measurement campaigns using two instrumented vehicles, as well as from aeroacoustic wind tunnel tests.
Journal Article

Development of a Virtual Multi-Axial Simulation Table to Enhance the Prognosis of Loads on Powertrain Mounting System During Durability Applications

2017-03-28
2017-01-0420
Vibration Isolation is the key objective of engine mounting systems in the automotive industry. A well-designed, robust engine mount must be capable of isolating the engine assembly from road-based excitations. Owing to high vibration inputs, engine mounts are susceptible to wear and failure. Thus, the durability of engine mounts is a cause for concern. A design validation methodology has been developed at Jaguar Land Rover using Multibody Dynamics (MBD) to enhance the prognosis of engine mount loads during full - vehicle durability test events. This paper describes the development of a virtual multi-axial simulation table rig (MAST Rig) to test virtual engine mount designs. For the particular example considered in this paper, a simple sinusoidal input is applied to the MAST Rig. The development of the virtual MAST Rig has been described including details of the modelling methodology.
Journal Article

Cyclic Stress-Strain Behaviour of AM60B and AE44 Cast Magnesium Alloys and Its Impact on LCF Characterisation and Fatigue Analysis

2014-04-01
2014-01-0969
Light weight alloys are widely used in the automotive industry in order to meet environmental requirements. Cast magnesium alloys are candidate materials due to their high strength to weight ratio, high stiffness and excellent castability. However, some previously reported anomalous cyclic stress-strain behaviours of magnesium alloys have not been fully investigated especially in LCF characterisation. The main objective of this work was to investigate the cyclic loading-unloading behaviour of high pressure die cast (HPDC) AM60B and AE44 magnesium alloys under uniaxial tension or/and compression and its effect on LCF behaviour. It was found that classical linear stress-strain behaviour, for both AM60B and AE44 alloys, applied only to a very small range of stress beyond which significant pseudo-elastic behaviour was discovered. This affected LCF characterisation and subsequent fatigue analysis processes.
Technical Paper

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-10-08
2017-01-2429
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
Journal Article

CFD-based Modelling of Flow Conditions Capable of Inducing Hood Flutter

2010-04-12
2010-01-1011
This paper presents a methodology for simulating Fluid Structure Interaction (FSI) for a typical vehicle bonnet (hood) under a range of onset flow conditions. The hood was chosen for this study, as it is one of the panels most prone to vibration; particularly given the trend to make vehicle panels lighter. Among the worst-case scenarios for inducing vibration is a panel being subjected to turbulent flow from vehicle wakes, and the sudden peak loads caused by emerging from a vehicle wake. This last case is typical of a passing manoeuvre, with the vehicle suddenly transitioning from being immersed in the wake of the leading vehicle, to being fully exposed to the free-stream flow. The transient flowfield was simulated for a range of onset flow conditions that could potentially be experienced on the open road, which may cause substantial vibration of susceptible vehicle panels.
Technical Paper

CFD Simulation of Side Glass Surface Noise Spectra for a Bluff SUV

2006-04-03
2006-01-0137
Simulation of local flow structures in the A-pillar/side glass region of bluff SUV geometries, typical of Land Rover vehicles, presents a considerable challenge. Features such as relatively tight A-pillar radii and upright windscreens produce flows that are difficult to simulate. However, the usefulness of aerodynamics simulations in the early assessment of wind noise depends particularly on the local accuracy obtained in this region. This paper extends work previously published by the author(1) with additional data and analysis. An extended review of the relevant published literature is also provided. Then the degree to which a commercial Lattice-Boltzman solver (Exa PowerFLOW™) is currently able to capture both the local flow structure and surface pressure distribution (both time averaged and unsteady) is evaluated. Influential factors in the simulation are shown to be spatial resolution, turbulence and boundary layer modelling.
Technical Paper

Beamforming Quantification of Acoustic Transmission Paths for Passenger Vehicles Using a Reciprocal Approach

2023-05-08
2023-01-1090
This paper presents an experimental method for measuring transmission paths from the exterior to the interior of a passenger vehicle using a reciprocal approach: A production vehicle was placed in a semi-anechoic environment; artificial noise sources were placed at the location of the occupant’s ear(s) inside the vehicle and beamforming arrays with a total of more than 300 microphones were used to observe apparent noise sources on the vehicle exterior resulting from transmission paths. This makes it possible to quickly measure transmission paths over the whole vehicle body. One of the motivations for this work is the monitoring of sealing quality on production vehicles. Artificial seal breaches were introduced on the vehicle and a number of excitation signals were assessed to develop a method to detect and localise leakage noise sources.
Technical Paper

Assessment of a Vehicle's Transient Aerodynamic Response

2012-04-16
2012-01-0449
A vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment. The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively.
X