Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Reconsideration of injury criteria for pedestrian subsystem legform test~Problems of rigid legform impactor

2001-06-04
2001-06-0206
The legform impactor proposed by EEVC/WG17 is composed of a rigid thigh segment and a rigid lower leg segment. Human bone, however, has flexibility, causing some differences between the EEVC rigid legform impactor and the human leg. This research analyzes the influence of the differences (rigid versus flexible) on the injury criteria. It also reanalyzes the upper tibia acceleration with regard to the fracture index. The rigid legform impactor cannot simulate bone bending motion, so the injury criteria should consider the legform rigidity. It means the injury criteria need to include the bone bending effect. From several PMHS test results, the shearing displacement becomes 23 mm and 20 degrees for bending angle including the bone bending effect. However, the bone bending effect will change with the loading conditions. Therefore, to establish a certain injury criteria for a rigid legform impactor is impossible. To solve this problem, a flexible legform impactor seems to be needed.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Technical Paper

Development of a Biofidelic Flexible Pedestrian Legform Impactor

2003-10-27
2003-22-0020
The European Enhanced Vehicle-Safety Committee (EEVC) has proposed a test procedure to assess the protection vehicles provide to the lower extremity of pedestrians during a collision. This procedure utilizes a legform impactor developed by the Transport Research Laboratory (TRL). However, the TRL Pedestrian Legform Impactor (TRL-PLI) is composed of rigid long bones (cannot simulate the bone flexibility of the human) and rather stiff knee joint. The differences lead to a lack of biofidelity of the TRL-PLI, i.e., unnaturally stiff responses are observed. This study develops a biofidelic Flexible Pedestrian Legform Impactor (Flex-PLI) that can simulate human bone flexibility and human knee joint stiffness properly. The Flex-PLI can also measure many of the injury parameters, long bone strains at multiple locations, knee ligament elongations, and the compression forces between the femoral condyles and tibial plateau in comparison to the TRL-PLI.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Comparison of Pedestrian Subsystem Safety Tests Using Impactors and Full-Scale Dummy Tests

2002-03-04
2002-01-1021
Evaluation of car front aggressiveness in car-pedestrian accidents is typically done using sub-system tests. Three such tests have been proposed by EEVC/WG17: 1) the legform to bumper test, 2) the upper legform to bonnet leading edge test, and 3) the headform to bonnet top test. These tests were developed to evaluate performance of the car structure at car to pedestrian impact speed of 11.1 m/s (40 km/h), and each of them has its own impactor, impact conditions and injury criteria. However, it has not been determined yet to what extent the EEVC sub-system tests represent real-world pedestrian accidents. Therefore, there are two objectives of this study. First, to clarify the differences between the injury-related responses of full-scale pedestrian dummy and results of sub-system tests obtained under impact conditions simulating car-to-pedestrian accidents. Second, to propose modifications of current sub-system test methods. In the present study, the Polar (Honda R&D) dummy was used.
X