Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Research on the Evacuation Readiness of Bus Crews and Passengers - Investigation of the Effect of a New Type of Exit

1996-10-01
962210
This research was conducted to propose appropriate emergency exits for bus crews and passengers. We developed the improved emergency exit based on the results of current bus exit performance tests, and investigated its effect on evacuation readiness. Tests employing human subjects were conducted to measure the time required to evacuate using the improved emergency exit. The subjects' psychological responses during evacuation were also studied to identify any evacuation problems. We also carried out tests of group evacuation through windows in a current bus to obtain the relationship between the evacuation time, the number of evacuation subjects, and the number of windows. The results show that the improved emergency exit is effective in improving evacuation readiness. It is clear that there is a positive correlation between the evacuation time, the number of subjects, and the number of windows.
Technical Paper

JCAPII Cross Check Tests of Fast Electrical Mobility Spectrometers for Evaluation of Accuracy

2007-10-29
2007-01-4081
Crosscheck tests of fast electrical mobility spectrometers, Differential Mobility Spectroscopy (DMS) and Engine Exhaust Particle Sizer(EEPS), were conducted to evaluate the accuracy of fine particle measurement. Two kinds of particles were used as test particles for the crosscheck test of instruments: particles emitted from diesel vehicles and diluted in a full dilution tunnel, and particles generated by CAST. In the steady state tests, it was confirmed that the average concentration of each instrument was within the range of ±2σ from the average concentration of all the same type of instruments. In the transient tests, it is verified that the instruments have almost equal sensitivity. For application of the fast electrical mobility spectrometers to evaluation of particle number and size distributions, it is essential to develop a calibration method using reference particle counters and sizers (CPC, SMPS, etc.) and maintenance methods appropriate for each model.
Technical Paper

Improvement of Flame Exposure Test for High Pressure Hydrogen Cylinders to Achieve High Reliability and Accuracy

2006-04-03
2006-01-0128
To achieve a method for flame exposure testing of high-pressure cylinders in automobiles that allows fair evaluations to be made at each testing institute and also provides high testing accuracy, we investigated the effects of the flame scale of the fire source, the fuel type, the shape of the pressure relief device shield, and the ambient temperature through experiments and numerical simulation. We found that, while all of these are factors that influence evaluation results, the effects of some factors can be reduced by increasing the flame size. Therefore, a measurement technique to quantitatively determine the flame size during the test is required. Measuring temperatures at the top of each cylinder is a candidate technique. Furthermore, flame exposure tests to be conducted on cylinders as single units must ensure safety during a vehicle fire.
Technical Paper

Ignition Process of Intermittent Short-Circuit on Modeled Automobile Wires

1996-02-01
960395
Our study was conducted to demonstrate the primary factors involved in fires which result from an automobile's electrical wire harness system with fuses. In our experiments we used modeled automobile wire harnesses to study the processes of ignition and the resultant fires. Current was passed through blade type fuses to a portion of the harness and was intermittently short-circuited by a grounded metal plate. The nominal current ratings of the fuses we used were lower than or equal to 30 amperes [A], and the operating current was 30A at 12 Volts. Current flowed to the harness specimens through a DC power source. We found that electrical tracking with scintillation, caused by a weak electric flow through carbonized wire insulation, rarely generated flames in the wire harnesses without blowing the fuse. Ignition was never observed on the insulation near the areas shorted by the arc and/or overloaded currents going to the wire elements.
Technical Paper

Identification of Vehicle Dynamics Under Lateral Wind Disturbance Using Autoregressive Model

1993-11-01
931894
Analysis of vehicle motion under conditions of lateral wind disturbance is important for evaluating handling properties and vehicle stability. In the analysis, identification of vehicle dynamics is often carried out, and data for the identification is usually measured by a test with a lateral wind generator. However, vehicle transient response in the test usually converges for a short duration because of the limitation of the wind width. If the identification carried out from this data by conventional methods such as FFT, fine frequency resolution is not gained. In this research, an identification method based on the autoregressive model (AR-method), which is robust for a phenomenon of short duration, has been applied to the analysis of vehicle dynamics under the conditions in order to solve the above issue.
Technical Paper

ISO 26262 C Class Evaluation Method for Motorcycles by Expert Riders Incorporating Technical Knowledge Obtained from Actual Riding Tests

2017-11-05
2017-32-0057
In applying the ISO 26262 controllability classification for motorcycles in actual riding tests, a subjective evaluation by expert riders is considered to be the appropriate approach from the viewpoint of safety. We studied the construction of an expert-rider-based C class evaluation method for motorcycles and developed some evaluation test cases reproducing various hazardous events. We determined that it was necessary to accumulate more evaluation cases for further representative scenarios and that, to avoid variations in such evaluations, a method in which different expert riders can carry out testing following a common understanding had to be devised. Considering these problems for practical application, this study aimed at establishing an actual riding test method for C class evaluation by expert riders and to develop a deeper understanding of test procedures and management.
Journal Article

Examination of Hazard Analysis and Risk Assessment and Exposure Research in the Real Traffic Situation of ISO 26262 for Motorcycles

2016-11-08
2016-32-0058
ISO 26262, an international functional safety standard of electrical and/or electronic systems (E/E systems) for motor vehicles, was published in November 2011 and it is expected that the scope will be extended to motorcycles in a second edition of ISO 26262 going to be published in 2018. In order to apply ISO 26262 to motorcycle, proper estimation of Exposure, Controllability, and Severity are key factors to determine Motorcycle Safety Integrity Level (MSIL). Exposure is a factor to indicate the probability of the state of an operational situation that can be hazardous with the E/E system malfunction. And it is not easy to estimate the motorcycle Exposure due to less availability of back ground data in actual operational situation compared to motor vehicle. Therefore real traffic situation should be investigated in order to provide rationales for MSIL determination.
Journal Article

Estimating a Rider’s Compensatory Control Actions by Vehicle Dynamics Simulation to Evaluate Controllability Class in ISO 26262

2020-01-24
2019-32-0537
Controllability is defined in ISO 26262 as a driver’s ability to avoid a specified harm caused by a malfunction of electrical and electronic systems installed in road vehicles. According to Annex C of Part 12 of ISO 26262, simulation is one of the techniques that the Controllability Classification Panel (CCP) can use to evaluate comprehensively the controllability class (C class) of motorcycles. With outputs of (i) an index for the success of harm avoidance and (ii) the magnitude of the rider’s compensatory control action required to avoid harm, the simulation is useful for evaluating the C class of the degrees of malfunction that cannot be implemented in practice for the sake of the test rider’s safety. To aim at supplying data that the CCP can use to judge the C class, we try to estimate the vehicle behavior and a rider’s compensatory control actions following a malfunction using vehicle dynamics simulations.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Effect of Alcohol Fuels on Fuel-Line Materials of Gasoline Vehicles

2005-10-24
2005-01-3708
In 1999, some Japanese fuel suppliers sold highly concentrated alcohol fuels, which are mixtures of gasoline and oxygenates, such as alcohol or ether, in amounts of 50% or more. In August 2001, it was reported that some vehicle models using the highly concentrated alcohol fuels encountered fuel leakage and vehicle fires due to corrosion of the aluminum used for the fuel-system parts. The Ministry of Economy, Trade and Industry (METI) and the Ministry of Land, Infrastructure and Transport Government of Japan (MLIT) jointly established the committee on safety for highly concentrated alcohol fuels in September 2001. The committee consisted of automotive technology and metal corrosion experts knowledgeable about preventing such accidents and ensuring user safety. Immersion tests were conducted on metals and other materials used for the fuel-supply system parts to determine the corrosion resistance to each alcohol component contained in the highly concentrated alcohol fuels.
Journal Article

Development and Characteristics of a Burner for Localized Fire Tests and an Evaluation of Those Fire Tests

2012-04-16
2012-01-0987
We have developed a new propane burner that satisfies the requirements of localized fire test which was presented in SAE technical paper 2011-01-0251. This paper introduces the specifications of this burner and reports its characteristics as determined from various fire exposure tests that we conducted in order to gather data. These tests included temperature and heat flux distribution on cylinder surfaces, which would be useful for the design of automotive compressed fuel cylinders. Our fire exposure tests included localized and engulfing fire tests to compare TPRD activation time, cylinder burst pressure and other parameters between different flame configurations and tests to identify the effects of an automotive compressed fuel cylinder on localized fire test results.
Technical Paper

Detailed Study of Hazard Analysis and Risk Assessment of ISO 26262 for Motorcycles

2017-11-05
2017-32-0083
ISO 26262, an international functional safety standard of electrical and/or electronic systems (E/E systems) for motor vehicles, was published in November 2011 and it is expected that the scope will be extended to motorcycles in a second edition of ISO 26262 going to be published in 2018. ISO/DIS 26262 second edition published in 2016 has Part 12 as a new part in order to apply ISO 26262 to motorcycle. Proper estimation of Exposure, Controllability, and Severity in accordance with ISO/DIS 26262 Part 12, are key factors to determine Motorcycle Safety Integrity Level. To estimate precise these factors, there would be a case that it might not be appropriate to apply studies done for passenger car to motorcycle, and it would be necessary to apply motorcycle specific knowledge and estimation methods. In our previous studies we clarified these motorcycle specific issues and studied the method for the adaptation.
Journal Article

Comparison of Fires in Lithium-Ion Battery Vehicles and Gasoline Vehicles

2014-04-01
2014-01-0428
Electric vehicles have become more popular and may be involved in fires due to accidents. However, characteristics of fires in electric vehicles are not yet fully understood. The electrolytic solution of lithium-battery vehicles is inflammable, so combustion characteristics and gases generated may differ from those of gasoline cars. Therefore, we conducted fire tests on lithium-ion battery vehicles and gasoline vehicles and investigated the differences in combustion characteristics and gases generated. The fire tests revealed some differences in combustion characteristics. For example, in lithium-ion battery vehicles, the battery temperature remained high after combustion of the body. However, there was almost no difference in the maximum CO concentration measured 0.5 to 1 m above the roof and 1 m from the side of the body. Furthermore, HF was not detected in either type of vehicle when measured at the same positions as for CO.
X