Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

Steer-Restoring Torque Controlled Driving Simulator for Developing Steering Road Feel

1991-11-01
912690
A driving simulator system for developing steering road feel has been developed. A new steering gear box or an electronic steering system is installed on the simulator and its road feel and control algorithm are developed according to the characteristics of any vehicle which has been programed into the engineering work-station. The vehicle model programed into the engineering work station runs according to the driver's operations, which are fed through the new steering system to be tested. The steer-restoring torque of the vehicle programed into the engineering work-station is produced by an actuator, and gives the impression through the new system of having been fed back from an actual road.
Technical Paper

Simulation Techniques for Determining Motorcycle Controllability Class according to ISO 26262

2018-10-30
2018-32-0060
The ISO 26262 standard specifies the requirement for functional safety of electrical and electronic systems within road vehicles. We have accumulated case studies based on actual riding tests by subjective judgment of expert riders to define a method for determining the controllability class (C class). However, the wide variety of practical traffic environments and vehicle behaviors in case of malfunction make it difficult to evaluate all C classes in actual running tests. Furthermore, under some conditions, actual riding tests may cause unacceptable risks to test riders. In Part 12 Annex C of ISO/DIS 26262, simulation is cited as an example of a technique for comprehensive evaluations by the Controllability Classification Panel. This study investigated the usefulness of mathematical simulations for evaluating the C class of a motorcycle reproducing a malfunction in either the front or rear brakes.
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Journal Article

Prediction of Spray Behavior in Injected by Urea SCR Injector and the Reaction Products

2017-10-08
2017-01-2375
In the urea SCR system, urea solution is injected by injector installed in the front stage of the SCR catalyst, and NOx can be purified on the SCR catalyst by using NH3 generated by the chemical reaction of urea. NH3 is produced by thermolysis of urea and hydrolysis of isocyanic acid after evaporation of water in the urea solution. But, biuret and cyanuric acid which may cause deposit are sometimes generated by the chemical reactions without generating NH3. Spray behavior and chemical reaction of urea solution injected into the tail-pipe are complicated. The purpose of this study is to reveal the spray behavior and NH3 generation process in the tail-pipe, and to construct the model capable of predicting those accurately. In this report, the impingement spray behavior is clarified by scattered light method in high temperature flow field. Liquid film adhering to the wall and deposit generated after evaporation of water from the liquid film are photographed by the digital camera.
Technical Paper

Potential of Nanoparticle Formation by Vehicles

2006-04-03
2006-01-0622
For the better understanding of nanoparticles observed on the rode side, adding to the emission test on the chassis dynamometer and engine dynamometer test, possible factors for formation of nanoparticles are investigated. As other possible factors, cold starting of transient test cycle, blow-by gas from heavy duty diesel engine without a positive crankcase ventilation, exhaust braking, and plume mixing of vehicle exhausts were investigated. Nuclei mode particles under the transient test cycles formed during fuel cut period, fuel enrichment period and idling period. Concentration of nuclei mode particles during the idling period are depends on exhaust temperature. The higher exhaust temperature courses the lower number concentration but variation range is within twice. Emission rate of nanoparticles from blow-by gas is one thousandth of tail pipe emissions rate and was found to be negligible.
Technical Paper

Performance Improvement of On-Center Regulation for Large Sized Vehicles

2000-12-04
2000-01-3433
The toe-change of road-wheel, so-called compliance-steer(CS), caused by suspension compliance is proved to occur around a steady instantaneous center under steady run at constant speed. The adverse/proverse CS, that increases/decreases the side-slip angle versus the velocity vector of vehicle, is realized by locating the center rearward/forward of the axle. By designing the front/rear wheel CS as a proverse/adverse CS with nonlinear compliance that is large at on-center but small at off-center, vehicle characteristics to reduce lateral deviation caused by disturbance and to improve tracking performance are possible.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

Optimal Specifications for the Advanced Pedestrian Legform Impactor

2017-11-13
2017-22-0014
This study addresses the virtual optimization of the technical specifications for a recently developed Advanced Pedestrian Legform Impactor (aPLI). The aPLI incorporates a number of enhancements for improved lower limb injury predictability with respect to its predecessor, the FlexPLI. It also incorporates an attached Simplified Upper Body Part (SUBP) that enables the impactor’s applicability to evaluate pedestrian’s lower limb injury risk also with high-bumper cars. The response surface methodology was applied to optimize both the aPLI’s lower limb and SUBP specifications, while imposing a total mass upper limit of 25 kg that complies with international standards for maximum weight lifting allowed for a single operator in the laboratory setting. All parameters were virtually optimized considering variable interaction, which proved critical to avoid misleading specifications.
Technical Paper

Numerical Modeling of International Variations in Diesel Spray Combustion with Evaporation Surrogate and Virtual Species Conversion

2017-03-28
2017-01-0582
A methodology for simulating effect of international variations in fuel compositions on spray combustion is proposed. The methodology is validated with spray combustion experiments with real fuels from three different countries. The compositions of those fuels were analyzed through GC×GC and H-NMR. It was found that ignition delay times, flame region and flame luminosity were significantly affected by the compositional variations. For the simulation, an evaporation surrogate consisting of twenty two species, covering basic molecular types and a wide range of carbon numbers, is developed. Each species in the evaporation surrogate is then virtually converted to a reaction surrogate consisting of n-hexadecane, methylcyclohexane and 1,2,4-trimethyl benzene so that combustion reactions can be calculated with a published kinetic model. The virtual species conversion (VSC) is made so as to take over combustion-related properties of each species of evaporation surrogates.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Modeling Study of Vehicle Emission Impacts on Air Quality - JCAP Air Quality Model Working Group Report

2003-05-19
2003-01-1864
Air Quality Modeling Working Group developed two models to evaluate effects of automobile emission reduction measures on air quality improvement: Urban Air Quality Simulation Model in which secondary aerosol formation processes have been incorporated, and Roadside Air Quality Simulation Model in which micro-scale traffic flow has been taken into consideration. Concretely, a model has been built up for estimating SPM concentration in ambient air in which high concentrated air pollutants have been contained during summer and winter. The model has been built up by using UAM (Urban Airshed Model) as base model, and the following modification has been made to the base model. First, ISSOROPIA (secondary inorganic aerosol equilibrium model) has been added to the base model, and a secondary organic aerosol formation/reaction model (SOA model) has been incorporated into the model.
Technical Paper

Measuring Method of Fuel Consumption for Natural Gas Vehicles

2003-05-19
2003-01-2009
To achieve high-accuracy measurements of fuel consumption in testing on natural gas vehicles, a method for measuring the absolute value of fuel consumption by the gravimetric method using certificated reference weights and an electric platform scale has been developed. By performing a flow-meter test and a chassis dynamometer test using the gravimetric method, the measurement accuracy of the value of fuel flow rate and fuel consumption obtained by the fuel flow meters, carbon balance method, and air-to-fuel ratio method was evaluated. As a result, a highly accurate method for measuring fuel consumption in chassis dynamometer tests has been confirmed.
Technical Paper

Large Eddy Simulation of Unsteady Flow Around a Formula Car on Earth Simulator

2007-04-16
2007-01-0106
One of the world's largest unsteady turbulence simulations of flow around a formula car was conducted using Large Eddy Simulation (LES) on the Earth Simulator in Japan. The main objective of our study is to investigate the validity of LES for the assessment of vehicle aerodynamics, as an alternative to a conventional wind tunnel measurement or the Reynolds Averaged Navier-Stokes (RANS) simulation. The aerodynamic forces estimated by LES show good agreement with the wind tunnel data (within several percent!) and various unsteady flow features around the car is visualized, which clearly indicate the effectiveness of large-scale LES in the very near future for the computation of flow around vehicles with complex configurations.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
X