Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validity of Low Ventilation for Accident Processing with Hydrogen Leakage from Hydrogen-Fuelled Vehicle

2013-04-08
2013-01-0211
Appropriate emergency response information is required for first responder before hydrogen fuel cell vehicles will become widespread. This paper investigates experimentally the hydrogen dispersion in the vicinity of a vehicle which accidentally releases hydrogen horizontally with a single volumetric flow of 2000 NL/min in the under-floor section while varying cross and frontal wind effects. This hydrogen flow rate represents normally a full throttle power condition. Forced wind was about maximum 2 m/s. The results indicated that the windward side of the vehicle was safe but that there were chiefly two areas posing risks of fire by hydrogen ignition. One was the leeward side of the vehicle's underbody where a larger region of flammable hydrogen dispersion existed in light wind than in windless conditions. The other was the area around the hydrogen leakage point where most of the leaked hydrogen remained undiffused in an environment with a wind of no stronger than 2 m/s.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Journal Article

Unregulated Harmful Substances in Exhaust Gas from Diesel Engines

2009-06-15
2009-01-1870
The volatile organic compounds (VOC) from diesel engines, including formaldehyde and benzene, are concerned and remain as unregulated harmful substances. The substances are positively correlated with THC emissions, but the VOC and aldehyde compounds at light load or idling conditions are more significant than THC. When coolant temperatures are low at light loads, there are notable increases in formaldehyde and acetaldehyde, and with lower coolant temperatures the increase in aldehydes is more significant than the increase in THC. When using ultra high EGR so that the intake oxygen content decreases below 10%, formaldehyde, acetaldehyde, benzene, and 1,3-butadiene increase significantly while smokeless and ultra low Nox combustion is possible.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Truck Braking Standards and Regulations in Japan

1989-02-01
890867
This paper introduces the Japanese standards and regulations of automobiles with brakes as the central subject and clarifies the difference from those of Europe and USA by comparison. Further, this paper describes not only the application status of the standards and regulations in Japan but also the features of structure and performance of Japanese trucks that are designed and produced under such standards and regulations. It can be said that the Japanese trucks are comparatively simple in structure but are in a level equal to or higher than European and USA automobiles in respect of performance. Also in respect of the international harmonization, the internationalization of standards is being conducted in Japan on the basis of ISO and the internationalization for regulations is considered to be under preparation.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Technical Paper

The Wear Mechanism of Piston Rings and Cylinder Liners Under Cooled-EGR Condition and the Development of Surface Treatment Technology for Effective Wear Reduction

2005-04-11
2005-01-1655
The superior fuel economy of diesel engines compared to gasoline engines is favorable in reducing carbon dioxide (CO2) emissions. On the other hand, the reductions in nitrogen oxides (NOx) and particulate matter (PM) emissions are technically difficult, thus the improvement in the emission reduction technologies is important. Although the cooled exhaust gas recirculation (cooled-EGR) is the effective method to reduce NOx emissions, it is known to have durability and reliability problems, especially of the increased wear of piston rings and cylinder liners. Therefore, the degree of cooling and amount of EGR are both limited. To apply the cooled-EGR more effectively, the wear reduction technology for such components are indispensable. In this study, the negative effects of cooled-EGR on the wear are quantified by using a heavy-duty diesel engine, and its wear mechanism is identified.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Technical Paper

The Spray Models and Their Influence on Ignition

1995-02-01
950279
The differences between spray models are investigated by comparing calculation results with experimental data. The calculations are performed using the KIVA-II code. The spray models TAB, which is the original model of KIVA-II, and the model developed by Reitz are calculated and compared. A semi-empirical spray model based on the TAB model is also formulated and compared with the other models. The penetration and droplet size distribution are compared with data from constant pressure bomb tests. The calculated ignition delay is compared with actual engine operating data- Each spray model has different characteristics influencing the atomization process. These differences result in discrepancies during the penetration, evaporation, and ignition.
Technical Paper

The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle

1999-03-01
1999-01-0471
To reduce emissions from diesel engines, the effects of oxidation catalysts on the emissions reductions were studied. The effectiveness of several oxidation catalysts on both the regulated and unregulated emissions was evaluated. The oxidation activity of the catalysts was varied by changing Pt loading. The regulated emissions include particulate (PM), hydrocarbon (HC), and carbon monoxide (CO), and the unregulated emissions include benzene, formaldehyde, acetaldehyde, and benzo[a]pyrene (B[a]P). An 8 litter, turbocharged and aftercooled diesel engine was operated under the Japan Diesel 13 (D13) mode cycle for the evaluations. As the first step, evaluations were conducted with a commercially available JIS #2 diesel fuel (0.046 wt% sulfur). All the regulated and unregulated emissions except PM were reduced as the Pt loading (i.e. oxidation activity) increased. However, PM emissions were increased by the generation of sulfate when the Pt loading exceeded 0.2 g/l.
Technical Paper

The IP Filter, a DOC-Integrated DPF, for an Advanced PM Aftertreatment System (2): An Evaluation of Fundamental Performance

2007-04-16
2007-01-0654
DPR consists of a multiple fuel-injection system, an electronic engine control unit, and a DPR Cleaner. The DPR cleaner is one assembly unit consisting of a DOC, a catalyzed DPF, and an exhaust silencer. Thus, DPR is a system developed to achieve healthy operation of a DPF with active regeneration regardless of engine operating conditions. The IP Filter was developed to improve the DPR cleaner by reducing the size of the unit and shortening the regeneration time. Both the DOC and DPF are integrated into one unit structure. The IP Filter has open-ended cells on the front face unlike a conventional wall-flow DPF. Instead, the plugs are positioned at the interface between the DOC and DPF. On the rear face of the IP Filter, plugs are installed at the same positions as those of a conventional DPF. The DOC substrate of the IP Filter is made of highly porous, straight honeycomb, the same as that of DPF.
Technical Paper

The Hino E13C: A Heavy-Duty Diesel Engine Developed for Extremely Low Emissions and Superior Fuel Economy

2004-03-08
2004-01-1312
The Hino E13C was developed for heavy-duty truck application to meet Japan's 2003 NOx and 2005 particulate emissions standards simultaneously with significant fuel economy improvement. A combined EGR system consisting of an external EGR system with a highly efficient EGR cooler and an internal EGR system with an electronically controlled valve actuation device was newly developed to reduce NOx emissions for all operating conditions without requiring a larger engine coolant radiator. A Hino-developed DPR was installed to achieve extremely low particulate emissions at the tail pipe. Increased strength of engine structural components and a ductile cast iron piston enabled high BMEP operation at lower engine speeds and reductions of both engine size and weight. This paper describes key technologies developed for the E13C as well as the development results.
Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Technical Paper

Test procedures to evaluate vehicle compatibility

2001-06-04
2001-06-0240
Test procedures for evaluating vehicle compatibility were investigated based on accident analysis and crash tests. This paper summarizes the research reported by Japan to the IHRA Compatibility Working Group. Passenger cars account for the largest share of injuries in head-on collisions in Japan and were identified as the first target for tackling vehicle compatibility in Japan. To ascertain situations in collisions between vehicles of different sizes, we conducted crash tests between minicars and large cars, and between small cars and large cars. The deformation and acceleration of the minicar and small car is greater than that of large car. ODB, Overload and MDB tests were performed as procedures for evaluating vehicle compatibility. In overload tests, methods to evaluate the strength of the passenger compartment were examined, and it is found that this test procedure is suitable for evaluating the strength of passenger compartments.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Study on the Measuring Method of Vehicular PM Size Distribution to Simulate the Atmospheric Dilution Process

2002-10-21
2002-01-2716
The measuring method of vehicular particulate matter (PM) size distribution to simulate the atmospheric dilution process was studied. PM size distribution was measured with a scanning mobility particle sizer (SMPS). To simulate the atmospheric dilution process with a chassis dynamometer test, a chasing experiment was done in order to obtain reference data. A light duty diesel truck was selected as a basic test vehicle. Three sizes of prototype partial flow diluters (PPFD) were made to reproduce the PM size in the atmosphere. The PM sizes of the chasing experiment and the PPFD experiment was roughly agreed. Differences in the data obtained from a full flow dilution tunnel and the chasing experiments were investigated. The length of the transfer tube greatly affected the smaller side of the PM number concentration.
Technical Paper

Study on Exterior Idling Sound Quality Evaluation Method for Diesel Engine Trucks

1999-05-17
1999-01-1739
In diesel engine trucks, the sound quality improvement as well as the noise level reduction is demanded because of their annoying exterior noise. The semantic differential method was applied to evaluate the sound quality of trucks. In order to improve the analytical accuracy, subjects who can evaluate the characteristics of sound quality were statistically selected among all the subjects. Comfortability and powerfulness were extracted as the principal components by using the data of the selected subjects. It has been clarified that the comfortability strongly relates to high frequency element ratio, high frequency level, etc. The powerfulness strongly relates to the Zwicker loudness.
X