Refine Your Search




Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Weathering of Thermal Control Coatings

Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Waste and Hygiene Compartment for the International Space Station

The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Ventilation Transport Trade Study for Future Space Suit Life Support Systems

A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Technical Paper

Thermal Vacuum Testing of the Moon Mineralogy Mapper Instrument

The Moon Mineralogy Mapper (M3) instrument is scheduled for launch in 2008 onboard the Indian Chandrayaan-1 spacecraft. The mission is managed by the Indian Space Research Organization (ISRO) in Bangalore, India and is India's first flight to the Moon. M3 is being developed for NASA by the Jet Propulsion Laboratory under the Discovery Program Office managed by Marshall Space Flight Center. M3 is a state-of-the-art instrument designed to fulfill science and exploratory objectives. Its primary science objective is to characterize and map the lunar surface composition to better understand its geologic evolution. M3's primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. M3 is a cryogenic near infrared imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Thermal Strategy for the Phoenix Robotic Arm Deployment

The Mars Scout Phoenix Lander successfully landed in the Martian northern latitude on May 25, 2008. The Robotic Arm, which was designed to dig and to transfer soil samples to other Lander instruments, contained a number of actuators that had specific operational windows on the Martian surface due to the bearing lubricant. The deployment of the Robotic Arm was planned for Sol 2 (Mars days are referred to “Sols”). A few weeks before Mars landing, the Robotic Arm operations team learned that a strict flight rule had been imposed. It specified that the deployment shall be accomplished when the actuators were at or above −25°C since the deployment activity was qualified with the actuators at −40°C. Furthermore, the deployment plan identified a window of opportunity between 13:00 Local Solar Time (LST, equivalent to dividing the Sol into 24 equal Martian hours) and 15:30 LST.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

Thermal Engineering of Mars Entry Non-Ablative Aeroshell Part 1

A transient thermal analysis of a Carbon/Carbon (C/C) Mars Entry Non-Ablative Aeroshell Assembly was performed to determine the maximum temperatures it would reach during a Mars entry. The purpose of this thermal analyses was to (1) determine the maximum temperatures of the 5 layers and the close-out which make up the aerothermal shield and (2) to transmit these temperatures from SINDA/G finite difference format to finite element format in COSMOS/M structures/dynamic models using Technical Alliance Group (TAG) developed SINDA/ G temperature translator software (STT).
Technical Paper

Thermal Design of the Mars Science Laboratory Powered Descent Vehicle

NASA's Mars Science Laboratory mission will use a Powered Descent Vehicle to accurately and safely land a roving, robotic laboratory on the surface of Mars. The precision landing systems employed on this vehicle are exposed to a wide range of mission environments from deep space cruise to atmospheric descent and require a robust and adaptable thermal design. This paper discusses the overall thermal design philosophy of the MSL Powered Descent Vehicle and presents analysis of the active and passive elements comprising the Cruise, Entry, Descent, and Landing thermal control systems.
Technical Paper

Thermal Design and On-Orbit Performance of the Multi-Angle Imaging SpectroRadiometer

The Multi-angle Imaging SpectroRadiometer (MISR) instrument was launched aboard NASA’s Earth Observing System (EOS) Terra spacecraft on December 18, 1999. The overall mission design lifetime for the instrument is 6 years. The EOS Terra spacecraft was placed in a sun-synchronous near-circular polar orbit with an inclination of 98.3 degrees and a mean altitude of 705 km. The overall objective of MISR is to provide a means to study the ecology and climate of Earth through the acquisition of global multiangle imagery on the daylit side of Earth. MISR views the sunlit Earth simultaneously at nine widely spaced angles, collects global images with high spatial detail in four colors at every angle. The images acquired, once calibrated, provide accurate measurements of brightness, contrast and color of reflected sunlight.
Journal Article

Thermal Control System of the Moon Mineralogy Mapper Instrument

The Moon Mineralogy Mapper (M3) instrument is one in a suite of twelve instruments which will fly onboard the Indian Chandrayaan-1 spacecraft scheduled for launch in 2008. Chandrayaan-1 is India's first mission to the Moon and is being managed by the Indian Space Research Organization (ISRO) in Bangalore, India. Chandrayaan-1 overall scientific objective is the photo-selenological and the chemical mapping of the Moon. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. It is a “push-broom” near infrared (IR) imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.