Refine Your Search

Topic

Author

Search Results

Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

2017-03-28
2017-01-0186
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

Thermal Design and On-Orbit Performance of the Multi-Angle Imaging SpectroRadiometer

2001-07-09
2001-01-2262
The Multi-angle Imaging SpectroRadiometer (MISR) instrument was launched aboard NASA’s Earth Observing System (EOS) Terra spacecraft on December 18, 1999. The overall mission design lifetime for the instrument is 6 years. The EOS Terra spacecraft was placed in a sun-synchronous near-circular polar orbit with an inclination of 98.3 degrees and a mean altitude of 705 km. The overall objective of MISR is to provide a means to study the ecology and climate of Earth through the acquisition of global multiangle imagery on the daylit side of Earth. MISR views the sunlit Earth simultaneously at nine widely spaced angles, collects global images with high spatial detail in four colors at every angle. The images acquired, once calibrated, provide accurate measurements of brightness, contrast and color of reflected sunlight.
Technical Paper

The Potential for Low-Cost Electricity from Concentrating Solar Power Systems

1999-08-02
1999-01-2668
Concern over the possibility of global climate change as a result of anthropogenic greenhouse gas buildup in the atmosphere is resulting in increased interest in renewable energy technologies. The World Bank recently sponsored a study to determine whether solar thermal power plants can achieve cost parity with conventional power plants. The paper reviews the conclusions of that study.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

2015-04-14
2015-01-0351
Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy's National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

1992-07-01
921391
Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
Technical Paper

Operation of Third Generation JPL Electronic Nose on the International Space Station

2009-07-12
2009-01-2522
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 – 30 °C, relative humidity from 25 – 75% and pressure from 530 to 760 torr. This device was installed and activated on ISS on Dec. 9, 2008 and has been operating continuously since activation. Data are downlinked and analyzed weekly. Results of analysis of ENose monitoring data show the short term presence of low concentration of alcohols, octafluoropropane and formaldehyde as well as frequent short term unknown events.
Journal Article

On-Orbit Thermal Performance of the TES Instrument-Three Years in Space

2008-06-29
2008-01-2118
The Tropospheric Emission Spectrometer (TES), launched on NASA's Earth Observing System Aura spacecraft on July 15, 2004 has successfully completed over three years in space and has captured a number of important lessons. The instrument primary science objective is the investigation and quantification of global climate change. TES measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. It is an infrared (IR) high resolution, imaging Fourier Transform Spectrometer (FTS) with a 3.3 to 15.4 μm spectral coverage required for space-based measurements to profile essentially all infrared-active molecules present in the Earth's lower atmosphere. The nominal on-orbit mission lifetime is 5 years. The Aura spacecraft flies in a sun-synchronous near-circular polar orbit with 1:38 pm ascending node.
Technical Paper

Mars Exploration Rover Surface Mission Flight Thermal Performance

2005-07-11
2005-01-2827
NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degrees East longitude on January 4, 2004 (Squyres, et al., Dec. 2004). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., Aug. 2004). Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 5. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (aereocentric longitude, Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160, Sol 398A).
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

International Space Station Temperature and Humidity Control Subassembly Hardware, Control and Performance Description

1998-07-13
981618
The temperature and humidity of the air within the habitable areas of the International Space Station are controlled by a set of hardware and software collectively referred to as the Temperature and Humidity Control (THC) subassembly. This subassembly 1) controls the temperature of the cabin air based on a crew selected temperature, 2) maintains humidity within defined limits, and 3) generates a ventilation air flow which circulates through the cabin. This paper provides descriptions of the components of the THC subassembly, their performance ranges, and the control approach of the hardware. In addition, the solutions of the design challenges of maintaining a maximum case radiated noise level of NC 45, controlling the cabin air temperature to within ±2°F of a setpoint temperature, and providing a means of controlling microbial growth on the heat exchanger surfaces are described.
Technical Paper

Integrated Orbiter/International Space Station Air Quality Analysis for Post-Mission 2A.1 Risk Mitigation

2000-07-10
2000-01-2250
Crewmember ingress of the International Space Station (ISS) before that time accorded by the original ISS assembly sequence, and thus before the ISS capability to adequately control the levels of temperature, humidity, and carbon dioxide, poses significant impacts to ISS Environmental Control and Life Support (ECLS). Among the most significant considerations necessitated by early ingress are those associated with the capability of the Shuttle Transportation System (STS) Orbiter to control the aforementioned levels, the capability of the ISS to deliver the conditioned air among the ISS elements, and the definition and distribution of crewmember metabolic heat, carbon dioxide, and water vapor. Even under the assumption that all Orbiter and ISS elements would be operating as designed, condensation control and crewmember comfort were paramount issues preceding each of the ISS Missions 2A and 2A.1.
Technical Paper

Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks

2014-04-01
2014-01-0680
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation.
Journal Article

Ground Validation of the Third Generation JPL Electronic Nose

2008-06-29
2008-01-2044
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station. It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 °C, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The abilities of the device to detect ten analytes, to reject confounders as “unknown” and to deconvolute mixtures of two analytes under varying environmental conditions has been tested extensively in the laboratory. Results of ground testing showed an overall success rate for detection, identification and quantification of analytes of 87% under nominal temperature and humidity conditions and 83% over all conditions.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
X