Refine Your Search

Topic

Author

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

2008-06-29
2008-01-2036
The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Technical Paper

Thermal Performance of Space Suit Elements with Aerogel Insulation for Moon and Mars Exploration

2006-07-17
2006-01-2235
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

The Magnesium Hatchback of the 3-Liter Car: Processing and Corrosion Protection

2000-03-06
2000-01-1123
The hatchback of Volkswagen's 3 liter car (3 l fuel consumption per 100 km) consists of an inner component of die casting magnesium (AM50) covered with an aluminum panel from the outside. This hybrid design requires a new manufacturing process: The pre-coated magnesium part will be bonded and folded with the bare aluminum part. Corrosion protection is provided by an organic coating system which both protects against general corrosion and galvanic corrosion. The corrosion of the Al / Mg sandwich has been examined with hybrid samples which are similar to the hatchback. Several powder coatings (epoxy resin, polyester resin, hybrid resin), wet paints and cathodic electro-coating paints of different thicknesses and compositions have been applied to the magnesium part. They show that only powder coating provides adequate protection. Galvanic corrosion at the points of attachment of the hatchback might be possible (for example the bolted joint of the hinge).
Technical Paper

Self-Deployable Foam Antenna Structures for Earth Observation Radiometer Applications

2006-07-17
2006-01-2064
The overall goal of this program was the development of a 10 m. diameter, self-deployable antenna based on an open-celled rigid polyurethane foam system. Advantages of such a system relative to current inflatable or self-deploying systems include high volumetric efficiency of packing, high restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying). As part of a NASA Phase II SBIR, Adherent Technologies and its research partners, Temeku Technologies, and NASA JPL/Caltech, conducted activities in foam formulation, interdisciplinary analysis, and RF testing to assess the viability of using open cell polyurethane foams for self-deploying antenna applications.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Technical Paper

Quantifying the Effect of Fast Charger Deployments on Electric Vehicle Utility and Travel Patterns via Advanced Simulation

2015-04-14
2015-01-1687
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patterns using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Technical Paper

Nanoscale Materials for Human Spaceflight Applications: Regenerable Carbon Dioxide Removal Using Single-wall Carbon Nanotubes

2006-07-17
2006-01-2195
The challenges of missions to the Moon and Mars presents NASA with the need for more advanced life support systems, including better technologies for CO2 removal in spacecraft atmospheres and extravehicular mobility units (EMU). Amine-coated single wall carbon nanotubes (SWCNT) have been proposed as a potential solution because of their high surface area and thermal conductivity. Initial research demonstrated the need for functionalization of SWCNT to obtain optimal adherence of the amine to the SWCNT support phase [1]. Recent efforts focus on the development of new methods to chemically bond amines to SWCNT. Synthesis and characterization methods for these materials are discussed and some preliminary materials characterization data are presented. The CO2 adsorption capacity for several versions of SWCNT supported amine-based CO2 scrubber materials is also determined.
Technical Paper

Mechanical Properties and Durability Study of Aerogel-Base Thermal Insulation for Advanced Space Suit

2003-07-07
2003-01-2446
Fiber-reinforced Aerogel composite insulations provide superior thermal insulation protection in both the low-earth orbit (LEO) and near-earth neighborhood planetary environments. The flexible nature and thermal properties of these materials make them the best insulation candidates for advanced space suit application. This paper reviews the properties of various Aerogel composite materials developed for NASA by Aspen Systems, Inc. Previous studies showed that the Aerogel materials retained acceptable thermal performance after some amount of mechanical cycling. The goal of the current work is to reach a complete understanding of the mechanical properties of these materials in the domain of space suit application. Hence, a good knowledge of the durability of the aerogel composites is needed. This paper presents the extensive testing program needed to determine the life of these insulations for advanced space suit application.
Technical Paper

Mars Rover 2003 Battery Charger

1999-08-02
1999-01-2447
The Jet Propulsion Laboratory Mars Exploration Program Office is currently planning a series of exciting missions to the Red Planet. During each launch opportunity, the missions to Mars will include a Rover mission. During the earlier Rover missions to Mars such as the Mars Pathfinder mission carrying the Sojourner Rover in 1997, the main rover power source was a solar array. The power subsystem of the Sojourner Rover included a solar panel for power during the day, a non-rechargeable lithium battery for power during the night, and a power electronics board for power conditioning and distribution. Starting with the year 2003 the rover missions to Mars will incorporate a rechargeable energy storage device rather than a non-rechargeable power source. Included in the power electronics board, will be a battery controller/charger. The battery controller/charger will be able to monitor and control three parallel 4-cell battery strings.
Technical Paper

Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe

2001-07-09
2001-01-2235
A technology demonstration propylene Loop Heat Pipe (LHP) has been tested extensively in support of the implementation of this two-phase thermal control technology on NASA’s Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) instrument. This cryogenic instrument is being developed at the Jet Propulsion Laboratory (JPL) for NASA. This paper reports on the transient characterization testing results showing low frequency temperature oscillations. Steady state performance and model correlation results can be found elsewhere. Results for transient startup and shutdown are also reported elsewhere. In space applications, when LHPs are used for thermal control, the power dissipation components are typically of large mass and may operate over a wide range of power dissipations; there is a concern that the LHP evaporator may see temperature oscillations at low powers and over some temperature range.
Journal Article

Investigation of Influences on Brake Pad Wear

2020-10-05
2020-01-1614
To date, no generally valid statements can be made about the service life of brake pads, which may be due to factors such as driving style, the friction material used or the varying vehicle weight. While dynamic friction models including friction history are already established [1], the investigation of wear and wear dust behavior is currently in the focus of many research projects. One example is the investigation of calculation models for brake pad wear while neglecting the temperature development in the brake [2]. In cars, temperatures of up to 800°C occur in the brake under high loads, which leads to a significant increase in wear. Accordingly, the question arises how an estimation of brake pad wear can be applied to highly dynamic load cases. To do this, however, the processes taking place in the boundary layer between pad and disc must first be comprehensively understood and described.
Technical Paper

In-Cylinder Measurements and Analysis on Fundamental Cold Start and Warm-up Phenomena of SI Engines

1995-10-01
952394
A recently developed Laser Raman Scattering system was applied to measure the in-cylinder air-fuel ratio and the residual gas content (via the water content) of the charge simultaneously in a firing spark-ignition engine during cold start and warm-up. It is the main objective of this work to elucidate the origin of misfires and the necessity to over-fuel at cool ambient temperatures. It turns out that the overall air-fuel ratio and residual gas content (in particular the residual water content) of the charge appear to be the most important parameters for the occurrence of misfires (without appropriate fuel enrichment), i.e., the engine behaviour from cycle to cycle becomes rather predictable on the basis of these data. An alternative explanation for the necessity to over-fuel is given.
Technical Paper

Implementing Ordinary Differential Equation Solvers in Rust Programming Language for Modeling Vehicle Powertrain Systems

2024-04-09
2024-01-2148
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling.
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
X