Refine Your Search

Topic

Author

Search Results

Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments

2004-07-19
2004-01-2345
People who wear protective uniforms that inhibit evaporation of sweat can experience reduced productivity and even health risks when their bodies cannot cool themselves. This paper describes a new sweating manikin and a numerical model of the human thermoregulatory system that evaluates the thermal response of an individual to transient, non-uniform thermal environments. The physiological model of the human thermoregulatory system controls a thermal manikin, resulting in surface temperature distributions representative of the human body. For example, surface temperatures of the extremities are cooler than those of the torso and head. The manikin contains batteries, a water reservoir, and wireless communications and controls that enable it to operate as long as 2 hours without external connections. The manikin has 120 separately controlled heating and sweating zones that result in high resolution for surface temperature, heat flux, and sweating control.
Technical Paper

The Thermal Design Evolution of the Phoenix Robotic Arm

2006-07-17
2006-01-2033
Phoenix, NASA's first Mars Scouts mission, will be launched in 2007 and will soft-land inside the Martian Arctic Circle, between north 65° and 72° North latitude, in 2008 to study the water history and to search for habitable zones. Similar to the IDD (Instrument Deployment Device) on the Mars Exploration Rovers (MER), Phoenix has a Robotic Arm (RA) which is equipped with a scoop to dig into the icy soil and to deliver the soil samples to instruments for scientific observations and measurements. As with MER, the actuators and the bearings of the Phoenix RA in a non-operating condition can survive the cold Martian night without any electrical power or any thermal insulation. The RA actuators have a minimum operating allowable flight temperature (AFT) limit of -55°C, so, warm-up heaters are required to bring the temperatures of all the RA actuators above the operating AFT limit prior to early morning operation.
Technical Paper

Subjective Perception of Thermal and Physical Comfort in Three Liquid Cooling Garments

2009-07-12
2009-01-2516
The subjective aspects of comfort in three different cooling garments, the MACS-Delphi, Russian Orlan, and LCVG were evaluated. Six subjects (4 males and 2 females) were tested in separate sessions in each garment and in one of two environmental chamber conditions: 24°C and 35°C. Subjects followed a staged exercise/rest protocol with different levels of physical exertion at different stages. Thermal comfort and heat perception were assessed by ratings on visual analog scales. Ratings of physical comfort of the garment and also garment flexibility in positions simulating movements during planetary exploration were also obtained. The findings indicated that both overall thermal comfort and head thermal comfort were rated highest in the MACS-Delphi at 24°C. The Orlan was rated lowest on physical comfort and less flexible in different body positions.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Self Contained Atmospheric Protective Ensemble (SCAPE) Suits Redesign and Implementation at Kennedy Space Center

2005-07-11
2005-01-2959
The Self Contained Atmospheric Protective Ensemble (SCAPE) suits, worn at the Kennedy Space Center (KSC) have been updated from the original 1970's design. The suits were renamed Propellant Handlers Ensemble (PHE) but are still commonly referred to as SCAPE. Several modifications to the suit were done over the last 20 years to improve the design for operational use. However, anthropometric changes in the user population over time have not been addressed. The following study addressed anthropometric concerns in the current SCAPE population. It was found that all suits had at least one area in which the recommended upper limit was exceeded by technicians. The most common areas to exceed the upper limit were: waist circumference, chest circumference and upper thigh circumference. Forearm circumference posed the least concern unless using long gauntlet glove which cause the twist lock ring to be located at the forearm rather than the wrist.
Technical Paper

Predicting Human Thermal Comfort in Automobiles

2005-05-10
2005-01-2008
The National Renewable Energy Laboratory (NREL) has developed a suite of thermal comfort tools to help develop smaller and more efficient climate control systems in automobiles. The tools consist of a thermal comfort manikin, physiological model, and psychological model that are linked together to assess comfort in a transient non-homogeneous environment. The manikin, which consists of 120 individually controlled zones, mimics the human body by heating, sweating, and breathing. The physiological model is a 40,000-node numerical simulation of the human body. The model receives heat loss data from the manikin and predicts the human physiological response and skin temperatures. Based on human subject test data, the psychological model takes the temperatures of the human and predicts thermal sensation and comfort.
Journal Article

Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design

2008-06-29
2008-01-2080
The Orion crew module (CM) is being designed to perform survivable land and water landings. There are many issues associated with post-landing crew survival. In general, the most challenging of the realistic Orion landing scenarios from an environmental control standpoint is the off-nominal water landing. Available power and other consumables will be very limited after landing, and it may not be possible to provide full environmental control within the crew cabin for very long after splashdown. Given the bulk and thermal insulation characteristics of the crew-worn pressure suits, landing in a warm tropical ocean area would pose a risk to crew survival from elevated core body temperatures, if for some reason the crewmembers were not able to remove their suits and/or exit the vehicle. This paper summarizes the analyses performed and conclusions reached regarding post-landing crew survival following a water landing, from the standpoint of the crew's core body temperatures.
Technical Paper

Pilot Investigation: Nominal Crew Induced Forces in Zero-G

1992-07-01
921155
Vibrational disturbance magnitude and frequency on space-flight missions is often a critical factor regarding mission success. Both materials processing experiments and astronomical investigations have specific microgravity environmental requirements. Recent efforts have been made to quantify the microgravity environment on the Space Shuttle Columbia by measuring gravity levels produced by specific mission events such as Orbiter engine burns, treadmill and ergometer activities, crew sleep periods, rotating chair operations, and body mass measurement operations. However, no measurements have been made of specific, nominal crewmember activities such as translating about the middeck, flight-deck, or in the Spacelab. This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation.
Technical Paper

Phase II Testing of Liquid Cooling Garments Using a Sweating Manikin, Controlled by a Human Physiological Model

2006-07-17
2006-01-2239
An ADvanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA’s liquid cooling garments (LCGs) used in advanced spacesuits. The manikin has 120 separate heated/sweating zones and is controlled by a finite-element physiological model of the human thermo-regulatory system. Previous testing showed the thermal sensation and comfort followed expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/arctic suit combination are compared to NASA physiological data to validate the manikin/model. An additional Orlan LCG configuration is assessed using the manikin and compared to the baseline LCG.
Technical Paper

Operational Psychological Issues for Mars and other Exploration Missions

1997-07-01
972290
Long duration NASA-Mir program missions, and the planned International Space Station missions, have given impetus for NASA to implement an operational program of psychological preparation, monitoring, and support for its crews. For exploration missions measured in years, the importance of psychological issues increases exponentially beyond what is currently done. Psychologists' role should begin during the vehicle design and crew selection phases. Extensive preflight preparation must focus on individual and team adaptation, and leadership. Factors such as lack of resupply options and communication delays will alter in-flight monitoring and support capabilities, and require a more self-sufficient crew. Involvement in postflight recovery will also be necessry to ensure appropriate reintegration to the family and job.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Technical Paper

Modeling of Human Thermal Comfort

2001-06-26
2001-01-2117
Current vehicle climate control systems are dramatically overpowered because they are designed to condition the cabin air mass in a specified period of time. A more effective and energy efficient objective is to directly achieve thermal comfort of the passengers. NREL is developing numerical and experimental tools to predict human thermal comfort in non-uniform transient thermal environments. These tools include a finite element model of human thermal physiology, a psychological model that predicts both local and global thermal comfort, and a high spatial resolution sweating thermal manikin for testing in actual vehicles.
Technical Paper

Methodologies for Critical Body Organ Space Radiation Risk Assessments

1993-07-01
932211
One of the risks associated with long-term space flights is cancer incidence resulting from chronic exposure to space radiation. Assessment of incurred risk from radiation exposure requires quantifying the dose throughout the body. The space radiation exposure received by Space Shuttle astronauts is measured by thermoluminescent dosimeters (TLDs) worn during every mission. These dosimeters measure the absorbed dose to the skin, but the dose to internal organs is required for estimating the cancer risk induced by space radiation. A method to extrapolate these skin dose measurements to realistic organ specific dose estimates, using the Computerized Anatomical Man (CAM) and Computerized Anatomical Female (CAF) models, is discussed in detail. A transport code, which propagates high energy nucleon and charged particles, is combined with the CAM/CAF-generated shielding areal distributions to evaluate the absorbed dose at selected organ sites.
Technical Paper

Measuring Aqueous Humor Glucose Across Physiological Levels: NIR Raman Spectroscopy, Multivariate Analysis, Artificial Neural Networks, and Bayesian Probabilities

1998-07-13
981598
We have elicited a reliable Raman spectral signature for glucose in rabbit aqueous humor across mammalian physiological ranges in a rabbit model stressed by recent myocardial infarction. The technique employs near infrared Raman laser excitation at 785 nm, multivariate analysis, non-linear artificial neural networks and an offset spectra subtraction strategy. Aqueous humor glucose levels ranged from 37 to 323 mg/dL. Data were obtained in 80 uL samples to anticipate the volume constraints imposed by the human and rabbit anterior chamber of the eye. Total sample collection time was 10 seconds with total power delivered to sample of 30 Mw. Spectra generated from the aqueous humor were compared qualitatively to artificial aqueous samples and an excitation offset technique was devised to counteract broadband background noise partially obscuring the glucose signature.
Technical Paper

Mathematical Modeling of Food Systems for Long-Term Space Missions

2002-07-15
2002-01-2290
The quantitative analysis of the food system for long-term space missions is a crucial factor for the comparison of different food plans and for the evaluation of the food system as part of the overall mission. Such analysis should include important factors such as nutrition, palatability, diet cycle length, and psychological issues related to food. This paper will give the details of a mathematical model that was developed during the first author's participation as a Summer Faculty Fellow at Johnson Space Center. The model includes nutrition, palatability, diet cycle length, and psychological issues as important components. The model is compatible with the Equivalent System Mass (ESM) metric previously developed as the Advance Life Support (ALS) Research and Technology Metric.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

ISS Phase 1 EVA Experience

2000-07-10
2000-01-2438
This paper summarizes specific and general lessons learned regarding extravehicular activity (EVA) during the joint U.S. and Russian Shuttle-Mir Program. Source data are drawn from the first hand experiences and publications accessible to the author who served as the U.S. co-chair of the Phase 1 Joint EVA Working Group. The information presented is pertinent to ongoing International Space Station (ISS) efforts and advanced exploration programs. Overall, this paper strives to show that EVA is just one component of an integrated manned space system and that its safety and success in this era of complex global ventures are reliant upon knowledge and experience balanced with new ideas.
X