Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Simulations of Tire Cornering Properties in Non-Steady State Conditions

Simulations of tire cornering properties with small-amplitude lateral inputs are carried out in non-steady state conditions. The simulation algorithm is derived and the discrete expressions are presented in detail. Based on the simulations, lateral force and aligning moment can be calculated numerically with time-varying yaw angle and lateral displacement as inputs in spatial domain. The flexibility of both tread and carcass along with tire width is taken into account effectively in the simulations, in which the flexibility of carcass includes translating, bending and twisting flexibility. The simulations in non-dimensional form are associated with four tire structure parameters only, which are non-dimensional parameters reflecting the characteristics of tire stiffness, tire width and contact length. Simulation results are validated by test data from step lateral inputs tests. Several typical simulation results are provided.
Technical Paper

A Theoretical Model of Non-Steady State Tire Cornering Properties and its Experimental Validation

Based on the tire cornering properties in steady state condition, a theoretical model of non-steady state tire cornering properties (NSSTCP) with small lateral inputs is presented. The outputs of the model are lateral force and aligning moment, while the inputs are yaw angle and lateral displacement (or turn slip and slip angle). The deformation characteristics of contact patch are analyzed in non-steady state condition. The flexibility of tread and that of carcass are both taken into account. The deformation of carcass is assumed to compose of translating part, bending part and twisting part. The tests of NSSTCP including pure yaw motion and pure lateral motion are realized with step inputs of yaw angle and slip angle respectively and test data is then transformed into frequency domain. The model is validated through comparing the computational results with test frequency response.
Technical Paper

A Generalized Theoretical Model of Tire Cornering Properties in Steady State Condition

A generalized theoretical model of tire cornering properties is presented in steady state condition with lateral deflection of tread and complex deformation of carcass under consideration. The model is suitable for full range of vertical load and slip angle. Six parameters are defined to represent the characteristics of tire stiffness, contact pressure distribution and carcass deformation. The model is validated against test data. Some simplified models, e.g. brush model, HSRI model when longitudinal force is zero, Fiala model etc., can be derived as some specific cases of this model. The analytic model provides a sound foundation for semi-empirical expression and gains insight into study of vehicle system dynamics.