Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Performance Comparison of Real-Time and General-Purpose Operating Systems in Parallel Physical Simulation with High Computational Cost

2014-04-01
2014-01-0200
Real-time simulation is a valuable tool in the design and test of vehicles and vehicle parts, mainly when interfacing with hardware modules working at a given rate, as in hardware-in-the-loop testing. Real-time operating-systems (RTOS) are designed for minimizing the latency of critical operations such as interrupt dispatch, task switch or inter-process communication (IPC). General-purpose operating-systems (GPOS), instead, are designed for maximizing throughput in heavy-load systems. In complex simulations where the amount of work to do in one step is high, achieving real-time depends not only in the latency of the event starting the step, but also on the capacity of the system for computing one step in the available time. While it is demonstrated that RTOS present lower latencies than GPOS, the choice is not clear when maximizing throughput is also critical.
Technical Paper

On-Line Sound Brush Measurement Technique for 3D Noise Emission Studies

2013-05-13
2013-01-1973
A key issue in noise emission studies of noise producing machinery concerns the identification and analysis of the noise sources and their interaction and radiation into the far field. This paper presents a new acoustic measurement technique for noise source identification in stationary applications. The core of the technology is a handheld measurement instrument combining a position and orientation tracking device with a 3D sound intensity probe. The technique allows an on-line 3D visualization of the sound field while moving the probe freely around the test object. By focusing on the areas of interest, troublesome areas can be identified that require further in-depth analysis. The measurement technique is flexible, interactive and widely applicable in industrial applications. This paper explains the working principle and characteristics of this new technology and positions it to existing methods like traditional sound intensity testing and array techniques.
Technical Paper

Measuring a Geometry by Photogrammetry: Evaluation of the Approach in View of Experimental Modal Analysis on Automotive Structures

2001-04-30
2001-01-1473
The very first step when starting an experimental modal analysis project is the definition of the geometry used for visualization of the resulting mode shapes. This geometry includes measurement points with a label and corresponding coordinates, and usually also connections and surfaces to allow a good visualization of the measured mode. This step, even if it sounds straightforward, can be quite time consuming and is often done in a rather approximate way. Photogrammetry is a technique that extracts 2D or 3D information through the process of analyzing and interpreting photographs. It is widely used for the creation of topographic maps or city maps, and more and more for quick modeling of civil engineering structures or accident reconstruction. The purpose of this paper is to evaluate the use of this technique in the context of modal testing of automotive structures.
Journal Article

Effect of Local Mesh Refinement on Inverse Numerical Acoustics

2010-06-09
2010-01-1413
Inverse numerical acoustics is a method which reconstructs the source surface normal velocity from the sound measured in the near-field around the source. This is of particular interest when the source is rotating or moving, too light or too hot to be instrumented by accelerometers. The use of laser vibrometers is often of no remedy due to the complex shape of the source. The Inverse Numerical Acoustics technique is based on the inversion of transfer relations (Acoustic Transfer Vectors) using truncated Singular Value Decomposition (SVD). Most of the time the system is underdetermined which results in a non unique solution. The solution obtained by the truncated SVD is the minimal solution in the RMS sense. This paper is investigating the impact of non homogeneities in the mesh density (local mesh refinement) on the retrieved solution for underdetermined systems. It will be shown that if transfer quantities are inverted as such, big elements get a higher weight in the inversion.
Technical Paper

Application of Energy Flow Analysis Focused on Path Visualization into Vehicle Design

2010-10-17
2010-36-0505
The development of new design tools to predict the vibro-acoustic behavior within the vehicle development process is of essential importance to achieve better products in an ever shorter timeframe. In this paper, an energy flow post-processing tool for structural dynamic analysis is presented. The method is based on the conversion of conventional finite element (FE) results into energy quantities corresponding with each of the vehicle subcomponents. Based on the global dynamic system behavior and local subcomponent descriptions, one can efficiently evaluate the energy distribution and analyze the vibro-acoustic behavior in complex structures. By using energy as a response variable, instead of conventional design variables as pressure or velocity, one can obtain important information regarding the understanding of the vibro-acoustic behavior of the system.
Technical Paper

Advances in Industrial Modal Analysis

2001-03-05
2001-01-3832
One of the scientific fields where, for already more than 20 years, system identification plays a crucial role is this of structural dynamics and vibro-acoustic system optimization. The experimental approach is based on the “Modal Analysis” concept. The present paper reviews the test procedure and system identification principles of this approach. The main focus though is on the real problems with which engineers, performing modal analysis on complex structures on a daily basis, are currently confronted. The added value of several new testing approaches (laser methods, smart transducers…) and identification algorithms (spatial domain, subspace, maximum likelihood,..) for solving these problems is shown. The discussed elements are illustrated with a number of industrial case studies.
X