Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Feasibility Study of a Design Concept of Electric Motorcycle

2015-09-01
2015-01-1775
As for automobile, the mass production period of Electric Vehicle(EV) has begun by the rapid progress of the battery performance. But for EV-Motorcycle(MC), it is limited for the venture companies' releases. The design and evaluation methodologies are not yet established or standardized so far. This paper provides the practical and the experimental examples. To study the feasibility of EV-MC, we developed the prototypes in the present technical and suppliers' parts environments, and evaluated them by the practical view of the MC usage. The developed EV-MC has the equivalent driving performance of the 250cc internal combustion engine(ICE)-MC and a cruising range of 100km in normal use.
Technical Paper

Temperature and Humidity Control System of JEM

1996-07-01
961368
A Temperature and Humidity Control (THC) assembly an essential system in order to provide comfortable environment for crew members in Japanese Experiment Module (JEM). Development of an engineering model (EM) and a proto model (PM) of JEM THC assembly started from March 1991 and completed on March 1995 successfully. In this development phase, it is called JEM EM phase, qualification test of THC was conducted to verify the THC design. This paper presents JEM THC design and an outline of the assembly model development.
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

TDMA Air-to-Air Surveillance System for Helicopter Safety

2001-09-11
2001-01-2995
The authors developed an air-to-air surveillance system that acquires mutual position and informs the position to the pilot. This system transmits position information obtained by GPS via TDMA (Time Division Multiple Access) datalink. Position information received from other aircraft is shown on a display. If proximity condition exists, voice alert is activated. This system can be used as an support system for collision avoidance. This paper describes the outline of the system and flight test result. Two prototype systems were installed on two helicopters. The third system was installed on a ground vehicle. Flight tests were performed using these three systems.
Technical Paper

Stability and Control Augmentation System of “ASKA”

1987-12-01
872334
“ASKA” is a STOL airplane with Upper Surface Blown type (USB) flaps used to perform research on powered lift technology developed by the National Aerospace Laboratory (NAL). ASKA has four high bypass ratio turbofan engines mounted above and forward of the wings, hydraulically actuated flight controls, and the Stability and Control Augmentation System (SCAS). The SCAS is a triple redundant system with three digital computers. In order to develop and evaluate its control laws, flight simulator tests have been conducted for 9 years during the design phase. Four flights have been devoted to evaluate functions of the SCAS and the control laws. The significant features of the control laws are to realize satisfactory flying qualities in the deep backside region at low airspeeds.
Technical Paper

Refill Friction Spot Joining for Aerospace Application

2015-09-15
2015-01-2614
In the modern aircraft manufacturing, the cost reduction, the manufacturing time reduction, and the weight saving of aircraft are strongly demanded. The Refill Friction Spot Joining [1,2](FSJ, in other words FSSW, Friction Stir Spot Welding), which is one of innovative solid-state joining methodologies based on the Friction Stir Welding[3], is a promising technology that can replace rivets and fasteners. This technology is expected to offer cost reduction and weight saving for the aircraft manufacturing. In this study, to make stronger and reliable joints, the shoulder-plunging process of Refill FSJ was employed. The weldability of the Alodine or Chromic Acid Anodize coated materials along with a faying-surface sealant was investigated. The joint properties, such as tensile shear strengths and corrosion resistance, were evaluated.
Technical Paper

Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems

2011-11-08
2011-32-0642
In this study, the technology that can predict fatigue life for motorcycle exhaust systems is developed. To predict the fatigue life, analyzing the engine vibration, modeling the vibration characteristics of exhaust systems and evaluating the fatigue damage of welded joints are considered essential. This paper shows an integrated numerical simulation and evaluation method. Furthermore, it is also shown with the result of a component vibration test of the muffler assembly to validate the technology. The results indicate a good correlation between the numerical simulation and the test.
Technical Paper

Limit Cycle in the Longitudinal Motion of the USB STOL ASKA - Control System Functional Mockup and Actual Aircraft

1992-04-01
921040
The Japanese Quiet Short Take Off and Landing experimental aircraft named ASKA was developed and flight tested during 1977 till 1989. The control system hard and software were examined by the functional mock-up with using the actual hardware. The small longitudinal limit cycle was observed in the closed loop test when the Pitch Control Wheel Steering software was on in the mock-up testing. In this paper, first, the method to analyze and to expect the limit cycle based on the describing function was shown. The limit cycle was induced due to the nonlinearities in the automatic control mechanism. The nonlinearities in the hardware were examined to make the model to simulate the system on the computer. The method was shown effective to predict the limit cycle in the mock-up. Second, with using the flight measured dynamics, the limit cycle was concluded as on border line between existing and not, which coincides with the actual flight result.
Technical Paper

Inlet Unstart Influence on Aerodynamic Characteristics of Next Generation Supersonic Transport (SST)

1998-09-28
985546
The impact of inlet unstart phenomena on supersonic transport (SST) was investigated by wind tunnel testing. Inlet unstart condition was simulated by controlling the captured mass flow by the inlet. Unsteady pressures on the lower surface of wing and unsteady forces of the wind tunnel model were measured. Unsteady pressure measurement was carried out to detect shock wave motion. Unsteady force measurement by using both internal balance and accelerometers was to estimate axial/angular acceleration of airframe when inlet unstart was occurred. The pressure measurement data revealed that shock location fluctuated with dominant frequency although the controlled mass flow was steady. And it was analytically shown that the dominant frequency is corresponding to the first order frequency of organ pipe resonance.
Technical Paper

Increasing of Seizure Durability of Shift Fork Using Surface Treatment

2005-10-12
2005-32-0020
In line with the increase in the output of motorcycle engines, there has been an increase in incidents of the seizure between shift fork and gear because of the increased thrust force. We designed a test method that uses actual shift forks to simulate actual sliding conditions, then used that test method to evaluate the feature of the shift fork sliding and the different shift fork surface treatments. The shift fork slid against the gear not as surface contact but as tilted contact. We selected the candidates from the view that the surface treatment of the shift fork contact surface to give it higher seizure resistance when in tilted contact is required. We evaluated chromium nitride thin film, diamond-like carbon thin film, molybdenum sprayed coating, and sulphonitriding, and molybdenum sprayed coating exhibited the highest seizure resistance. The conformability plays a significant role in the sliding between the shift fork and the gear.
Technical Paper

Improvement of Wear Resistance of Cam Shaft and Rocker Arm at 4-Cycle Engines

1999-09-28
1999-01-3296
The rocker arm has a function to lead the cam shaft rotation to the valve operation. There are cases when damages are caused due to abnormal wear at the sliding part, causing certain problems. Authors classified the wear phenomenon, and realized a systematic analysis on the possible cause of the damage. As a result, it was revealed that the damage was of two types, and to prevent the hard wear, it is effective to apply shot peening before plating. The prototype rocker arm was test under various lubricating conditions, thus actually confirming that the occurrence of wear was largely reduced.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Technical Paper

Experiment of Two-Phase Flow Loop Thermal Control System Using Test Rocket

1994-06-01
941405
This paper describes results of the thermal-hydraulic performance experiment system (THYPES) of the two-phase flow loop thermal control system using the test rocket which can maintain a gravity level of 10-4G for about six minutes. Feasibility study of this system had been conducted for loading into a experiment module of test rocket TR-IA No. 3. In 1991, engineering model of the experiment system was designed and manufactured in order to investigate its function, performance, and endurance against launching conditions. In 1992, flight model of the experiment system was designed and manufactured. The following tests were conducted so as to ensure the capability and compatibility of THYPES; functional test, performance test, environmental test, and interface tests between the experiment system and rocket avionics section. The experiment was performed on September 17, 1993 and the results are evolved.
Technical Paper

Enhancement of Thermal Fatigue Strength by the Addition of Calcium to Hypoeutectic Aluminum-Silicon Alloys

2018-10-30
2018-32-0027
Several elements affect the structure of eutectic silicon in hypoeutectic aluminum alloys [1, 2, 3, 4]. Among them, calcium has been investigated to a lesser extent compared to the typically used sodium and strontium. In order to enhance the thermal fatigue strength of a small engine, the morphology of eutectic silicon in hypoeutectic aluminum-silicon alloys is controlled by the addition of calcium. In addition, the castability and mechanical properties are investigated. Hence, samples containing different amounts of calcium are prepared at different cooling rates during solidification. The results revealed that, with the increase in the calcium amount and the cooling rate, eutectic silicon exhibits a fine morphology in cross-sectional images. Particularly, with the addition of at least 62 mass ppm of calcium in a specific range of cooling rates, refined eutectic silicon is obtained.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Development of Fatigue Durability Evaluation Technology for Motorcycle Frame

2015-11-17
2015-32-0811
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
Technical Paper

Desorbing Test on Trace Contaminants for the Japanese Closed Ecology Experiment Facilities (CEEF)

1995-07-01
951582
In the closed environments, removal of trace contaminants generated from persons, animals, and plants is important function to keep the environment below the allowable level. We conducted the fundamental tests in order to confirm design of TCCA (Trace Contaminants Control Assembly) for Closed Ecology Experiment Facilities (CEEF), and obtained the following results; 1) The palladium-on-alumina catalyst is suitable for CO, CH4, C2H4 conversion at temperature lower than 400°C. 2) The alkali impregnated AC (activated charcoal) is effective for NO2, SO2 removal and prevents catalyst poisoning from SO2. 3) The active-desorbing conducted by hot air blow-throw an AC is effective for C2H5OH, CH2Cl2 desorbing. We discuss the fundamental test and design conditions for TCCA.
Technical Paper

Automated Inspection Utilizing Deep Learning for Polished Skin

2024-03-05
2024-01-1939
This technical paper reports the development of an automatic defect detector utilizing deep learning for “polished skins”. Materials with a “polished skin” are used in the fabrication of the external plates of commercial airplanes. The polished skin is obtained by polishing the surface of an aluminum clad material, and they are visually inspected, which places a significant burden on inspectors to find minute defects on relatively large pieces of material. Automated inspection of these skins is made more difficult because the material has a mirror finished surface. Defects are broadly classified into three categories: dents, bumps, and discolorations. Therefore, a defect detector must be able to detect these types of defects and measure the defects’ surface profile. This technical paper presents details related to the design and manufacture of an inexpensive automated defect detector that demonstrates a sufficiently high level of performance.
X