Refine Your Search

Topic

Author

Search Results

Technical Paper

Vertical Drop Test of a Transport Fuselage Section

2002-11-05
2002-01-2997
The Structures and Materials Research Center of the National Aerospace Laboratory of Japan (NAL) conducted a vertical drop test of a fuselage section from a NAMC YS-11 transport airplane in December2001. This test program is a part of research activities in NAL on the structural crashworthiness of transport aircraft. In addition a cooperative research related to this test program was carried out between NAL and Kawasaki Heavy Industries, Ltd.(KHI). The main objective of this program is to develop optimal numerical models for crash simulation of aircraft fuselage and to obtain background data by drop tests of small-scale structural models and a full-scale fuselage section. Prior to the drop test of a full-scale fuselage structure, a trial numerical simulation on the crash behavior of a small-scale sub-floor structure was conducted by NAL using the explicit, nonlinear dynamic analysis code, LS-DYNA3D.
Technical Paper

The Feasibility Study of a Design Concept of Electric Motorcycle

2015-09-01
2015-01-1775
As for automobile, the mass production period of Electric Vehicle(EV) has begun by the rapid progress of the battery performance. But for EV-Motorcycle(MC), it is limited for the venture companies' releases. The design and evaluation methodologies are not yet established or standardized so far. This paper provides the practical and the experimental examples. To study the feasibility of EV-MC, we developed the prototypes in the present technical and suppliers' parts environments, and evaluated them by the practical view of the MC usage. The developed EV-MC has the equivalent driving performance of the 250cc internal combustion engine(ICE)-MC and a cruising range of 100km in normal use.
Technical Paper

TRACE CONTAMINANTS CONTROL ASSEMBLY DEVELOPMENT FOR THE JAPANESE CLOSED ECOLOGY EXPERIMENT FACILITIES

1994-06-01
941446
In the closed environments such as manned space station, it is necessary to remove contaminant gas to keep a suitable environment. Removal of gaseous contaminants generated from crew, animals, and plants is important function to keep the environment below the allowable level in the Closed Ecology Experiment Facilities (abbreviated as CEEF). CEEF consist of three modules for habitat, animal and plant, the supporting facilities for each module and a plant cultivation facility. CEEF are scheduled to be constructed from 1994 in Aomori Prefecture, northern part of Japan. For designing Trace Contaminant Control Assembly (TCCA) for CEEF, the following six (6) trace contaminants have been selected as major contaminant gas in CEEF; Ammonia (NH3) Methane (CH4) Ethylene (C2H4) Carbon Monoxide (CO) Nitrogen Dioxide (NO2) Sulfur Dioxide (SO2) Ethylene is well-known as an aggressive contaminant to plant growth and maturity.
Technical Paper

Summary of Vertical Drop Tests of YS-11 Transport Fuselage Sections

2003-09-08
2003-01-3027
Structures and Materials Research Center of the National Aerospace Laboratory of Japan (NAL) conducted vertical drop tests of fuselage sections of a NAMC YS-11 A-200 transport airplane. This test program is a part of research activities in NAL on the structural crashworthiness of transport aircraft. In addition a cooperative research related to this test program has been carried out by NAL and Kawasaki Heavy Industries, Ltd.(KHI). The main objectives of this program are to develop optimal numerical models for crash simulation of aircraft fuselage and to obtain background data by drop tests of full-scale fuselage sections under a controlled impact condition. Two sections of the fuselage structure with seats and passenger dummies were tested at different drop velocity to a rigid impact surface(concrete). Finite element models of the test articles for simulation of vertical drop tests were developed using a nonlinear dynamic analysis code, LS-DYNA3D.
Technical Paper

STUDY ON THE VIBRATION OF MOTORCYCLE MUFFLER SYSTEM

2001-12-01
2001-01-1868
Motorcycle engines are operated at an extremely broad range of revolutions, from 1000 min-1 to 10000 min-1 or more. Ideally, the natural frequency of each part should never match the engine excitation frequency at any point over that entire range of revolution speeds, but practically, there are times when resonance cannot be avoided because the range is so broad, and therefore the vibration amplitude at resonance must be kept low. For this reason, it is important to grasp not only the resonance frequency but also the vibration amplitude at that point. This may be achieved by two methods, measurement and analysis. The direct measurement of vibration is generally difficult because the motorcycle muffler system has a complex shape and in addition it gets very high temperature when the engine is operating. For this reason, with the aim of being able to predict muffler vibration at the design stage, we carried out a vibration test and FEM (finite element method) analysis.
Technical Paper

Research on the Performance of a Waterjet Propulsor for Personal Watercrafts

1999-09-28
1999-01-3264
A waterjet propulsor has come to be used more popularly for high speed watercrafts such as personal watercrafts. The most difficult problem for designing the waterjet system is that a tradeoff is required to properly determine the best parameters for the waterjet pump and subsequently the best overall propulsion system. This paper presents the design method and performance improvement of the waterjet propulsor used for personal watercrafts. The authors have clarified the performance of the individual component in the waterjet propulsor and improved the component efficiency empirically, and established the method to estimate the thrust and power characteristics of the propulsor on board from the component test results and other design parameters, which enables the optimization of the waterjet system.
Technical Paper

Refill Friction Spot Joining for Aerospace Application

2015-09-15
2015-01-2614
In the modern aircraft manufacturing, the cost reduction, the manufacturing time reduction, and the weight saving of aircraft are strongly demanded. The Refill Friction Spot Joining [1,2](FSJ, in other words FSSW, Friction Stir Spot Welding), which is one of innovative solid-state joining methodologies based on the Friction Stir Welding[3], is a promising technology that can replace rivets and fasteners. This technology is expected to offer cost reduction and weight saving for the aircraft manufacturing. In this study, to make stronger and reliable joints, the shoulder-plunging process of Refill FSJ was employed. The weldability of the Alodine or Chromic Acid Anodize coated materials along with a faying-surface sealant was investigated. The joint properties, such as tensile shear strengths and corrosion resistance, were evaluated.
Technical Paper

Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems

2011-11-08
2011-32-0642
In this study, the technology that can predict fatigue life for motorcycle exhaust systems is developed. To predict the fatigue life, analyzing the engine vibration, modeling the vibration characteristics of exhaust systems and evaluating the fatigue damage of welded joints are considered essential. This paper shows an integrated numerical simulation and evaluation method. Furthermore, it is also shown with the result of a component vibration test of the muffler assembly to validate the technology. The results indicate a good correlation between the numerical simulation and the test.
Technical Paper

Prediction of Transmission Loss for Motorcycle Muffler

1999-09-28
1999-01-3256
This paper describes the predicted results of acoustic transmission loss (T.L.) for a motorcycle muffler. First, the T.L. of a prototype muffler with one expansion chamber was obtained by measuring sound levels at the inlet and outlet ports of the muffler by speaker test. T.L. was then calculated by using a three-dimensional Finite-Element Method (FEM) for acoustic fields in the muffler. There was good coincidence between the calculated T.L. and experimentally observed data. Second, T.L. of the prototype muffler while attached to a motorcycle engine was measured. On this step, however, a similarly calculated T.L. using FEM to consider the effect of exhaust gas temperature in the muffler showed differences from the measured one. It was estimated that muffler body vibration sounds may affect the result. A dynamic analysis of the structure was carried out using FEM to obtain the eigen modes of the muffler body.
Technical Paper

Limit Cycle in the Longitudinal Motion of the USB STOL ASKA - Control System Functional Mockup and Actual Aircraft

1992-04-01
921040
The Japanese Quiet Short Take Off and Landing experimental aircraft named ASKA was developed and flight tested during 1977 till 1989. The control system hard and software were examined by the functional mock-up with using the actual hardware. The small longitudinal limit cycle was observed in the closed loop test when the Pitch Control Wheel Steering software was on in the mock-up testing. In this paper, first, the method to analyze and to expect the limit cycle based on the describing function was shown. The limit cycle was induced due to the nonlinearities in the automatic control mechanism. The nonlinearities in the hardware were examined to make the model to simulate the system on the computer. The method was shown effective to predict the limit cycle in the mock-up. Second, with using the flight measured dynamics, the limit cycle was concluded as on border line between existing and not, which coincides with the actual flight result.
Technical Paper

Improvement of Wear Resistance of Cam Shaft and Rocker Arm at 4-Cycle Engines

1999-09-28
1999-01-3296
The rocker arm has a function to lead the cam shaft rotation to the valve operation. There are cases when damages are caused due to abnormal wear at the sliding part, causing certain problems. Authors classified the wear phenomenon, and realized a systematic analysis on the possible cause of the damage. As a result, it was revealed that the damage was of two types, and to prevent the hard wear, it is effective to apply shot peening before plating. The prototype rocker arm was test under various lubricating conditions, thus actually confirming that the occurrence of wear was largely reduced.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Technical Paper

Evaluation Method of Exhaust Sound Quality of Motorcycle

1997-10-27
978459
The quality of exhaust sound has become one of the important factors in the motorcycle market. Therefore both an efficient sound quality evaluation method and technology to achieve ideal sound quality have become necessary. Sound qualify evaluation has generally been performed by trial and error through repeated modification of exhaust silencer construction until desired quality was obtained. But it usually took painstaking work and long hours. In order to solve such problems, we established an objective auditory evaluation method. We also applied Principal component analysis to analize the result of the “Semantic Differential Method (SD method)” so as to determine the affecting elements. Through this analysis system, “powerful sound” caused by relatively higher content of the low frequency range and “crispy sound” caused by a cyclic sound pattern were determined to be desirable sounds for “American type” motorcycles.
Technical Paper

Evaluation Method for Motorcycle Mode Fuel Consumption using a One-Dimensional Engine Simulation

2013-10-15
2013-32-9162
Motorcycle has broad spectrum of developments, such as excellent engine performance, low fuel consumption, emission and noise reduction. As global warming become a serious issue internationally, reduction of fuel consumption is especially of importance. In this study, an evaluation method for the WMTC mode fuel consumption using a one-dimensional engine simulation is investigated. The fuel consumption for the WMTC mode can be predicted in a short time without a complicated vehicle model to simulate transient behavior. The proposed method mostly showed good agreement with measured data for middle-class motorcycle using a chassis dynamometer.
Technical Paper

Enhancement of Thermal Fatigue Strength by the Addition of Calcium to Hypoeutectic Aluminum-Silicon Alloys

2018-10-30
2018-32-0027
Several elements affect the structure of eutectic silicon in hypoeutectic aluminum alloys [1, 2, 3, 4]. Among them, calcium has been investigated to a lesser extent compared to the typically used sodium and strontium. In order to enhance the thermal fatigue strength of a small engine, the morphology of eutectic silicon in hypoeutectic aluminum-silicon alloys is controlled by the addition of calcium. In addition, the castability and mechanical properties are investigated. Hence, samples containing different amounts of calcium are prepared at different cooling rates during solidification. The results revealed that, with the increase in the calcium amount and the cooling rate, eutectic silicon exhibits a fine morphology in cross-sectional images. Particularly, with the addition of at least 62 mass ppm of calcium in a specific range of cooling rates, refined eutectic silicon is obtained.
Technical Paper

Development of a Magnesium Swing Arm for Motorcycles

2004-09-27
2004-32-0048
In order to improve the fuel efficiency and the operating performance of motorcycles, there is a need to reduce their weight. Magnesium, which is the lightest of the various metals currently being used and has a high specific strength, has the potential to satisfy that need. We conducted a study to clarify the weldability and strength characteristics of, and the most suitable surface treatment for, extruded magnesium alloys and rolled magnesium alloys. Based on the stress analysis by the finite element method, we designed a magnesium swing arm and produced the prototype swing arm by pressing hot rolled AZ31 magnesium alloy plates and welding them. The prototype is about 10% lighter and has higher torsional rigidity than a conventional aluminum swing arm.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Development of Intake Sound Control Technique for Sports-Type Motorcycles

2013-10-15
2013-32-9164
Engine sound is one of the most important factors when selecting a motorcycle from various models. Therefore, it is necessary to create an appealing sound in the rider's ears in addition to complying with noise regulations. In this paper, how we control intake sound is described through the study of a sports-type motorcycle with an inline 4 cylinder engine. To control intake sound, both intake pressure pulsations generated by the engine and acoustic transfer characteristics of the intake system are important. It is shown by unsteady-state one-dimensional computational fluid dynamics analysis that specifications of the exhaust system affect intake pressure pulsations across the valve overlap period. Therefore, to emphasize high order components of the engine revolutions in the intake sound, for example, modifying the layout of the exhaust muffler is effective.
Technical Paper

Development of Fatigue Durability Evaluation Technology for Motorcycle Frame

2015-11-17
2015-32-0811
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
Technical Paper

Development of Fail-safe Method for Motorcycle's Electronic Throttle Control System

2009-11-03
2009-32-0124
In recent years, even motorcycles impose demands for engine power controls that are more flexible and precise. The Electronic Throttle Control (ETC) system is one of the methods that addresses this need. However, the most important issue facing the installation of the ETC system on the motorcycle is handling failures. To avoid this problem, we developed an ETC system for motorcycles that can properly effect engine power control in case of a failure. This ETC system contains in duplicate the major components to detect failures and switch to a failure mode properly. To effect control that is optimally suited to the type of failure, this system switches between three types of failure modes. These failure modes are designed to minimize risks in case of a failure and maximize the operational capability while the rider is on the way to have the motorcycle repaired.
X