Refine Your Search

Topic

Search Results

Technical Paper

Verification and Validation of a Safety-Critical Steer-By-Wire System Using DO-178B

2006-04-03
2006-01-1447
The application of DO-178B for the verification and validation of the safety-critical aspects of a steer-by-wire sub-system of a vehicle by using a spiral development model is discussed. The project was performed within a capstone design course at Kettering University. Issues including lessons learned regarding requirements, specifications, testing, verification, and validation activities as required by DO-178B are summarized.
Technical Paper

Using Digital Image Correlation to Measure Dynamics of Rolling Tires

2018-04-03
2018-01-1217
Vehicles are in contact with the road surface through tires, and the interaction at the tire-road interface is usually the major source of vibrations that is experienced by the passengers in the vehicle. Thus, it is critical to measure the vibrational characteristics of the tires in order to improve the safety and comfort of the passengers and also to make the vehicle quieter. The measurement results can also be used to validate numerical models. In this paper, Digital Image Correlation (DIC) as a non-contact technique is used to measure the dynamics of a racing tire in static and rolling conditions. The Kettering University FSAE car is placed on the dynamometer machine for this experiment. A pair of high-speed cameras is used to capture high-resolution images of the tire in a close-up view. The images are processed using DIC to obtain strain and displacement of the sidewall of the tire during rolling. The experiment is performed for various testing speeds.
Technical Paper

Traction and Clutch Effects on the Natural Frequency and Vibration Stability of Limited Slip Differential Axles

2007-05-15
2007-01-2295
The torsional natural frequencies of axles equipped with limited slip differential clutches depend on whether or not the tires and clutches are slipping since the effective inertia at each end of the axle is different for slipping and non-slipping conditions. Limited slip axle vibrations are typically analyzed for one tire slipping and the other not since that is the case for which the limited slip clutches are used. Vibrations often arise, however, during normal turning when both drive tires have good traction.
Technical Paper

The Effects of Retained Fluid and Humidity on the Evacuation of Critical Vehicle Systems

1999-05-10
1999-01-1630
In automotive assembly facilities worldwide, many critical vehicle systems such as brakes, power steering, radiator, and air conditioning require the appropriate fluid to function. In order to insure that these critical vehicle systems receive the correct amount of properly treated fluid, automotive manufacturers employ a method called Evacuation and Fill. Due to their closed-loop design, many critical vehicle systems must be first exposed to vacuum prior to being flooded with fluid. Only after the evacuation and fill process is complete will the critical vehicle system be able to perform as specified. It has long been thought, but never proven, that humidity and entrenched fluid were major hindrances to the Evacuation and Fill process. Consequently, Ford Motor Company Advanced Manufacturing Technology Development, Sandalwood Enterprises, Kettering University, and Dominion Tool & Die conducted a detailed project on this subject.
Technical Paper

State Space Formulation by Bond Graph Models for Vehicle System Dynamics

2008-04-14
2008-01-0430
Modeling and simulation of dynamic systems is not always a simple task. In this paper, the mathematical model of a 4 Degree Of Freedom (DOF) ride model is presented using a bond-graph technique with state energy variables. We believe that for the physical model as described in this research, the use of a bond-graph approach is the only feasible solution. Any attempt to use classical methods such as Lagrange equations or Newton's second law, will create tremendous difficulties in the transformation of a set of second order linear differential equations to a set of first order differential equations without violating the existence and the uniqueness of the solution of the differential equations, the only approach is the elimination of the damping of the tires, which makes the model unrealistic. The bond-graph model is transformed to a mathematical model. Matlab is used for writing a computer script that solves the engineering problem.
Technical Paper

Simulation Study of Vehicle Handling Characteristics on Snowy and Icy Terrain

2023-04-11
2023-01-0902
Safety is considered one of the most important parameters when designing a ground vehicle. The adverse effect of weather on a vehicle can lead to a surge in safety issues and accidents. Several safety assistance systems are available in modern vehicles, which are designed to lessen the negative effects of weather hazards. Although these safety systems can intervene during crucial conditions to avoid accidents, driving a vehicle on snowy or icy terrain can still be a challenging task. Road conditions with the least tire-road friction often results in poor vehicle handling, and without any kind of safety system it can lead to mishaps. With the use of Adams Car software and vehicle dynamics modeling, a realistic relationship between the vehicle and road surface may be established. The simulation can be used to have a better understanding of vehicle handling in snowy and icy conditions, tire-ice interaction, and tire modeling.
Technical Paper

Physical Validation Testing of a Smart Tire Prototype for Estimation of Tire Forces

2018-04-03
2018-01-1117
The safety of ground vehicles is a matter of critical importance. Vehicle safety is enhanced with the use of control systems that mitigate the effect of unachievable demands from the driver, especially demands for tire forces that cannot be developed. This paper presents the results of a smart tire prototyping and validation study, which is an investigation of a smart tire system that can be used as part of these mitigation efforts. The smart tire can monitor itself using in-tire sensors and provide information regarding its own tire forces and moments, which can be transmitted to a vehicle control system for improved safety. The smart tire is designed to estimate the three orthogonal tire forces and the tire aligning moment at least once per wheel revolution during all modes of vehicle operation, with high accuracy. The prototype includes two in-tire piezoelectric deformation sensors and a rotary encoder.
Technical Paper

Investigation and Development of a Slip Model for a Basic Rigid Ring Ride Model

2018-04-03
2018-01-1116
With the recent advances in rapid modeling and rapid prototyping, accurate simulation models for tires are very desirable. Selection of a tire slip model depends on the required frequency range and nonlinearity associated with the dynamics of the vehicle. This paper presents a brief overview of three major slip concepts including “Stationary slip”, “Physical transient slip”, and “Pragmatic transient slip”; tire models use these slip concepts to incorporate tire slip behavior. The review illustrates that there can be no single accurate slip model which could be ideally used for all modes of vehicle dynamics simulations. For this study, a rigid ring based semi-analytical tire model for intermediate frequency (up to 100 Hz) is used.
Technical Paper

Feasibility Study Using FE Model for Tire Load Estimation

2019-04-02
2019-01-0175
For virtual simulation of the vehicle attributes such as handling, durability, and ride, an accurate representation of pneumatic tire behavior is very crucial. With the advancement in autonomous vehicles as well as the development of Driver Assisted Systems (DAS), the need for an Intelligent Tire Model is even more on the increase. Integrating sensors into the inner liner of a tire has proved to be the most promising way in extracting the real-time tire patch-road interface data which serves as a crucial zone in developing control algorithms for an automobile. The model under development in Kettering University (KU-iTire), can predict the subsequent braking-traction requirement to avoid slip condition at the interface by implementing new algorithms to process the acceleration signals perceived from an accelerometer installed in the inner liner on the tire.
Technical Paper

Experimentation for Design Improvements for Coil Spring in the Independent Suspension

2020-04-14
2020-01-0503
The objective of this project is to analyze potential design changes that can improve the performance of helical spring in an independent suspension. The performance of the helical spring was based upon the result measure of maximum value of stress acting on it and the amount displacement caused when the spring undergoes loading. The design changes in the spring were limited to coil cross section, spring diameter (constant & variable), pitch and length of the spring. The project was divided into Stage I & Stage II. For Stage I, using all the possible combinations of these design parameters, linear stress analysis was performed on different spring designs and their Stress and displacement results were evaluated. Based on the results, the spring designs were classified as over designed or under designed springs.
Journal Article

Effect of Limited Slip Clutch Friction on the Driveline Dynamics of a Rear Wheel Drive Vehicle Coasting in a Turn

2008-06-23
2008-01-1582
A model and simulation results are presented for the torsional dynamics of a rear wheel driveline while the vehicle is coasting in a turn. The model includes the effects of road load and powertrain drag, limited slip differential clutch friction, the inertias of the vehicle, wheels, axles, differential carrier, and driveshaft, the final drive ratio, torsional stiffnesses of the axles and driveshaft, vehicle track width, and radius of the turn. The dynamics of coasting in a turn differ from powered driving due to changes in the inertia loading the driveshaft, the damping effect of the disengaged transmission, and nonlinearities in the clutch friction. Specific focus is given to vibration in the axles and driveshaft due to variations in the torque-speed slope of the clutches, which is determined by the slope of the friction coefficient ‘μ’ versus sliding speed ‘v’ in the limited slip clutches.
Technical Paper

Effect of Chassis Design Factors (CDF) on the Ride Quality Using a Seven Degree of Freedom Vehicle Model

2004-03-08
2004-01-1555
The kinematics and kinetics of a seven degree of freedom vehicle ride model with independent front and rear suspension are developed. Lagrange's equation is used to obtain the mathematical model of the vehicle. The equations of motion are transformed to state space equations in Linear Time Invariant (LTI) form. The effect of Chassis Design Factors (CDF) such as stabilizer bars, stiffness', Dynamic Index in Pitch (DIP) and mass ratio on the vehicle ride quality are investigated. The ride quality of the 3 dimensional vehicle that includes bounce, pitch, roll and unsprung masses motion is demonstrated in time domain response. The vehicle is considered as a Multi-Input-Multi-Output System (MIMO) subjected to deterministic ground inputs. Outputs of interest for the ride quality investigation are vertical and angular displacement and vertical accelerations. Numerical computer simulation analysis is performed using MATLAB® software.
Technical Paper

Design, Modeling, and Analysis of Heave and Roll Decoupled Suspension Geometry for a Formula Student Prototype

2024-04-09
2024-01-2077
This work aims to present the application of mode coupling to a Formula Student racing vehicle and propose a solution. The major modes of a vehicle are heave, pitch, roll, and warp. All these modes are highly coupled – which means changing suspension rates or geometry will affect all of them – while alleviating some and making others worse characteristics. Decoupling these modes, or at least some of them, would provide more control over suspension setup and more refined race car dynamics for a given layout of the racetrack. This could improve mechanical grip and yield significant performance improvements in closed-circuit racing. If exploited well, this approach could also assist in the operation of the vehicle at an optimal kinematic state of the suspension systems, to gain the best wheel orientations and maximize grip from the tires under the high lateral accelerations and varied excitations seen on a typical road course.
Technical Paper

Design and Analysis of Kettering University’s New Proving Ground, the GM Mobility Research Center

2020-04-14
2020-01-0213
Rapid changes in the automotive industry, including the growth of advanced vehicle controls and autonomy, are driving the need for more dedicated proving ground spaces where these systems can be developed safely. To address this need, Kettering University has created the GM Mobility Research Center, a 21-acre proving ground located in Flint, Michigan at the former “Chevy in the Hole” factory location. Construction of a proving ground on this site represents a beneficial redevelopment of an industrial brownfield, as well as a significant expansion of the test facilities available at the campus of Kettering University. Test facilities on the site include a road course and a test pad, along with a building that has garage space, a conference room, and an indoor observation platform. All of these facilities are available to the students and faculty of Kettering University, along with their industrial partners, for the purpose of engaging in advanced transportation research and education.
Technical Paper

Data-Driven Modeling of Linear and Nonlinear Dynamic Systems for Noise and Vibration Applications

2023-05-08
2023-01-1078
Data-driven modeling can help improve understanding of the governing equations for systems that are challenging to model. In the current work, the Sparse Identification of Nonlinear Dynamical systems (SINDy) is used to predict the dynamic behavior of dynamic problems for NVH applications. To show the merit of the approach, the paper demonstrates how the equations of motions for linear and nonlinear multi-degree of freedom systems can be obtained. First, the SINDy method is utilized to capture the dynamic behavior of linear systems. Second, the accuracy of the SINDy algorithm is investigated with nonlinear dynamic systems. SINDy can output differential equations that correspond to the data. This method can be used to find equations for dynamical systems that have not yet been discovered or to study current systems to compare with our current understanding of the dynamical system.
Technical Paper

Blind-Spot Detection and Avoidance Utilizing In-Vehicle Haptic Feedback Force Feedback

2011-04-12
2011-01-0556
Steer-by-wire is a system where there are no mechanical connections between the steering wheel and the tires. With the inception of electric and hybrid cars, steer-by-wire is becoming more common. A steer-by-wire car opens many opportunities for additional feedback on the steering wheel. Providing haptic feedback through the steering wheel will add additional depth and capabilities to make the driving experience safer. In this paper we investigated the effects of force feedback on the steering wheel in order to detect and/or avoid blind spot collisions. Two types of force feedback are examined using a driving simulator: a rumble and a counter steering force. A rumble on the steering wheel can avoid blind-spot accidents by providing feedback to drivers about vehicles in their blind spots. Providing counter steering force feedback can help in the reduction in blind-spot accidents. The results show that adding counter steering force feedback did reduce blind-spot related collisions.
Technical Paper

Autonomous Lane Change Control Using Proportional-Integral-Derivative Controller and Bicycle Model

2020-04-14
2020-01-0215
As advanced vehicle controls and autonomy become mainstream in the automotive industry, the need to employ traditional mathematical models and control strategies arises for the purpose of simulating autonomous vehicle handling maneuvers. This study focuses on lane change maneuvers for autonomous vehicles driving at low speeds. The lane change methodology uses PID (Proportional-Integral-Derivative) controller to command the steering wheel angle, based on the yaw motion and lateral displacement of the vehicle. The controller was developed and tested on a bicycle model of an electric vehicle (a Chevrolet Bolt 2017), with the implementation done in MATLAB/Simulink. This simple mathematical model was chosen in order to limit computational demands, while still being capable of simulating a smooth lane change maneuver under the direction of the car’s mission planning module at modest levels of lateral acceleration.
Technical Paper

Application of Bond Graph Technique and Computer Simulation to the Design of Passenger Car Steering System

2002-03-04
2002-01-0617
Vehicle Dynamics play an important role in responsiveness of a vehicle. The performance of a vehicle depends on its ride and handling characteristics [1]. Handling is a measure of the directional response of a vehicle and one of the important characteristics from the vehicle dynamics point of view. The directional response of a vehicle depends on the dynamics of the steering system. A good steering control provides an accurate feedback about how the vehicle reacts to the road. In this paper, the powerful techniques of Bond graphs and state equations [2] are used to design and analyze the dynamics of a manual rack and pinion steering system. The author obtains the transfer function between the Angle of rotation of front tire and the Angle of rotation of steering wheel. The overall steering ratio of the bond graph modeled steering system is compared with the overall ratio of a similar vehicle to validate the model.
Technical Paper

Analysis of an Electric Power Assisted Steering System using Bond Graphs

2003-03-03
2003-01-0586
This paper deals with a DC motor driven Electric Power Assisted Steering system integrating a manual rack and pinion steering system. The DC motor is controlled by an electronic controller and connected to the steering system through a set of gears. The DC motor and the steering were modeled using principles of bond graphs and combined with Controller to form the system model. The state equations describing the system were developed using the bond graphs. The performance of the system was simulated using Matlab/Simulink. The electronic controller develops an output voltage to control the DC motor, considering vehicle speed and Steering Column torque inputs. This paper used a regression-weighted function to describe the operation of the controller. Transient and steady state performance characteristics of the system were evaluated including its damping characteristics.
Technical Paper

Analysis of a 4-DOF Vehicle Model Using Bond Graph and Lagrangian Technique

2002-03-04
2002-01-0809
Bond graph modeling is a powerful technique to study the complex interactions occurring between various components in a system. A few investigations were carried out to study vehicle dynamics using Bondgraphs, but are limited to 2 degree of freedom systems [1,2&3]. In this work, a 4-DOF-vehicle model was developed using bond graphs. A frequency response analysis was also carried out to study the natural frequencies. This model was later validated using Lagrangian principles. The results correlated well for a typical passenger car using the manufacturer supplied information available in the public domain.
X