Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Towards A Definition of A Test Methodology for Rollover Resistance and Rollover Performance

2004-03-08
2004-01-0736
A variety of test methodologies currently exist to assess the propensity of a vehicle to roll laterally, the vehicle performance during a rollover event, and the associated risk of injury to the occupant. There are indications as to which tests are appropriate when attempting to replicate rollover events observed in the field. Due to the complexity of a rollover, test repeatability is a concern as well as cost, and field relevance. Since revisions to governmental rollover regulations are currently being considered, an assessment of currently available rollover test methodologies would provide a context to compare the different experimental designs. Additionally, the design of injury prevention strategies such as side air curtains, 4-point belts, etc. will also require the establishment of repeatable, robust, and economical test methods.
Technical Paper

Structural Analysis and Design Modification of Seat Rail Structures in Various Operating Conditions

2020-04-14
2020-01-1101
This paper is based on, and in continuation of the work previously published in ASEE NCS Conference held in Grand Rapids, MI [1]. Automotive seating rail structures are one of the key components in the automotive industry because they carry the entire weight of passenger and they hold the structure for seating foams and other assembled key components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions, should be able to withstand the weight of the passenger along with the other assembled parts as mentioned above. Also, functional requirements such as crash safety is very important to avoid or to minimize injuries to the occupants.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
Technical Paper

Implantation Design Guidelines for Instrumenting the Cadaveric Lower Extremity to Transduce Femur Loads and Tibial Forces and Moments

2003-03-03
2003-01-0162
Numerous studies have documented the implantation of a 6-axis load cell in series with the tibial shaft and a limited number of studies have instrumented the femur for uniaxial load transduction. We are unaware of a single study seeking to instrument both anatomical segments. In addition, while the instrumentation processes have been described in textural and graphical detail, the dimensions and material choices for preparation jigs, potting cups, etc. are typically not given. In the current study, we have reviewed the available literature and have developed a modified preparation and implantation methodology. We also include complete designs appropriate for a reproduction of our process or modification of the methodology by the reader. The robustness of our technique was verified in a companion study in which whole, unembalmed cadavers were subjected to a HYGE frontal sled test without compromise of the instrumentation.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
Technical Paper

Considerations for Rollover Simulation

2004-03-08
2004-01-0328
Rollover crashes are responsible for a significant proportion of traffic fatalities each year, while they represent a relatively small proportion of all motor vehicle collisions. The purpose of this study was to focus on rollover events from an occupant's perspective to understand what type of industry test method, ATD, computer based model, and injury assessment measures are required to provide occupant protection during rollovers. Specific injuries most commonly experienced in rollovers along with the associated injury sources were obtained by review of 1998-2000 NASS-CDS records. These data suggest that models capable of predicting the likelihood of brain injuries, specifically subarachnoid and subdural hemorrhage, are desirable. Ideally, the model should also be capable of predicting the likelihood of rib fractures, lung contusions and shoulder (clavicular and scapular) fractures, and facet, pedicle, and vertebral body fractures in the cervical spine.
Technical Paper

Child Restraint Systems: Top Tether Effectiveness in Side Impact Collisions

2013-04-08
2013-01-0601
Use of the top tether attachment in three commonly available anchor points provides added restraint of child restraint systems (CRS). Three tether attachment positions were used; floor, behind the head rest (parcel deck) and at the ceiling. The three anchor points are comparable in efficacy while no tether allows increased travel of the anthropomorphic test device (ATD) head. Two series of six tests were conducted at a max speed of 20 mph and peak deceleration of 16 G's using a deceleration sled test apparatus. The first series of tests was conducted at a 90 degree impact angle. On average there is 9% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal. The second series of tests was conducted at a 73 degree impact angle, there is 15% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal.
Technical Paper

Application of a Knee Injury Criteria for the Hybrid III Dummy to Address a Variety of Car Crash and Restraint Scenarios

1999-03-01
1999-01-0710
Numerous studies have documented that lower extremity injury is second only to the head and face in automotive accidents. Such injuries are common because the lower extremity is typically the first point of contact between the occupant and the car interior. Of all lower extremity injuries, the knee is the most common site of trauma. This typically results from high speed contact with the instrument panel which can produce fracture and subfracture (contusions, lacerations, abrasions) level injuries. Current Federal safety guidelines use a bone fracture criterion which is based solely on a peak load. The criterion states that loads exceeding 10 kN will likely result in gross bone fracture. However, cadaver experiments have shown that increased contact area (via padding) over the knee can significantly increase the amount of load that can be tolerated before fracture or subfracture injury.
Technical Paper

Analysis of a Frontal Impact of a Formula SAE Vehicle

2006-12-05
2006-01-3627
The objective of this study was to determine risk of injury to the driver during a frontal impact in a Formula SAE vehicle. Formula SAE is a collegiate student design competition where every year universities worldwide build and compete with open-wheel formula-style race cars. Formula SAE 2006 rules stipulate the use of an impact attenuator to absorb energy in the event of a frontal impact. These rules mandated an average deceleration not to exceed 20-g from a speed of 7.0 m/s (23 ft/s), but do not specify a specific time or pulse shape of the deceleration. The pulse shapes tested in this study included an early high-g, constant-g, and late high-g pulse. The tests were performed using the deceleration sled at the Kettering University Crash Safety Center. Using industry standard practices, this study examined the driver's risk of injury with regard to neck and femur loads, head and chest accelerations, as well as kinematic analysis using high speed video.
Technical Paper

Analysis of Rollover Injuries for 125 Occupants at a Single Trauma Center With Special Focus on Head and Neck Injury

2004-03-08
2004-01-0321
Analysis of the National Automotive Sampling System (NASS) data reveals that vehicle rollover accidents account for a relatively a small number of accidents, but the associated frequency of serious injury is high compared to frontal or side impact. These data demonstrate the apparently elevated probability of head and neck injury during rollover, with head injury occurring more frequently, injured 4.5 times more frequently than the neck when considering all injuries. Automotive industry researchers have performed numerous rollover tests with instrumented ATD's and have predicted an elevated probability of neck injury with little chance of head injury. This contradicts field data (NASS-CDS) which suggests a high frequency of head injury with little chance of neck injury. This difference may be explained in part, through the different volumes of data presented in the literature.
Technical Paper

An Analysis of Recent Accidents Involving Upper Extremity Fractures Associated with Airbag Deployment

2002-03-04
2002-01-0022
Prior experimental and field studies have demonstrated an increased risk of upper extremity fracture due the deployment of frontal airbags. The experimental studies provide valuable insight as to likely injury mechanisms; namely, increasing proximity increases the risk of forearm fracture. Still, field data is needed to validate these experimental findings. The available field data has largely been derived from direct case study analysis or a review of government accident statistics. In both cases, the datasets were comprised solely of pre-1995 era vehicles. Such data represents early generation airbag designs and there has been little additional study in this area. In addition, there has been an absence of fracture pattern analyses as a function of airbag deployment and non-deployment. Such an analysis would help elucidate the role of the deploying airbag on upper extremity fracture in the current fleet.
Technical Paper

A Methodology for Measurement and Analysis of Head-To- B-Pillar Contact Pressure and Area Response

2001-03-05
2001-01-0718
Government accident statistics show that approximately 35% of all car accident victims suffer an injury to the head and face. Such injuries are common during frontal, side, and rollover accidents as the head may impact the steering wheel, side pillars, windshield, or roof. Further, non-threatening injuries (i.e abrasions) may be suffered due to contact with the deployed airbag, or, in the case of an out-of-position occupant, a deploying airbag. While the forces and accelerations measured internal to the head are known to correlate with serious head injury (i.e. concussion, skull fracture, diffuse axonal injury), it is currently not possible to record how the loads are distributed over the head and face with the current ATD. Ultimately, such data could eventually be used to provide improved resolution as to the probability of superficial, soft tissue damage since past cadaver studies show that the distribution of contact pressures are related to such injuries.
X