Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Transfer Path Analysis at Daimler Trucks

2009-05-19
2009-01-2243
As for passenger cars, the overall noise and vibration comfort in commercial trucks and busses becomes an increasingly important sales argument. In order to effectively reduce the noise and vibration levels it is required to identify possible NVH issues at an early stage in the vehicle development process. For this reason a so-called “Virtual Transfer Path Analysis” (VTPA) method has been implemented which combines the results obtained from the conventional multi-body simulation and finite element method approaches. The resulting VTPA tool enables Daimler Trucks to systematically investigate and predict the complex interaction between powertrain excitation and the resulting vehicle response well before hardware prototypes become available. An overview of the theory is presented as well as the practical application and outcome of the technique applied in a past product development.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Using Timing Analysis for Evaluating Communication Behavior and Network Topologies in an Early Design Phase of Automotive Electric/Electronic Architectures

2009-04-20
2009-01-1379
The increasing functionality and complexity of future electric/electronic architectures requires efficient methods and tools to support design decisions, which are taken in early development phases 6. For the past four years, a holistic approach for architecture development has been established at Mercedes-Benz Cars R&D department. At its core is a seamless design flow, including the conception, the analysis and the documentation for electric/electronic architectures. One of the actual challenges in the design of electric/electronic architectures concerns communication behavior and network topologies. The increasing data exchange between the ECUs creates high requirements for the networks. With the introduction of FlexRay 21 and Ethernet the automotive network architecture become a lot more heterogeneous. Especially gateways must fulfill many new requirements to handle the strict periodic schedule of FlexRay and the partly event-triggered communication on CAN-busses 23.
Technical Paper

Using Simulation to Verify Diagnosis Algorithms of Electronic Systems

2009-04-20
2009-01-1043
In modern vehicles the architecture of electronics is growing more and more complex because both the number of electronic functions – e.g. implemented as software modules – as well as the level of networking between electronic control units (ECUs) is steadily increasing. This complexity leads to greater propagation of failure symptoms, and diagnosing the causes of failure becomes a new challenge. Diagnostics aims at detecting failures such as defect sensors or faulty communication messages. It is subdivided into diagnosis algorithms on an ECU and algorithms running offboard, e.g. on a diagnostic tester. These algorithms have to complement each other in the best possible way. While in the past the diagnosis algorithm was developed late in the development process, nowadays there are efforts to start the development of such algorithms earlier – at least in parallel to developing a new feature itself. This would allow developers to verify the diagnosis algorithms in early design stages.
Technical Paper

Using High-Fidelity Multibody Vehicle Models in Real-Time Simulations

2012-04-16
2012-01-0927
Digital or virtual prototyping by means of a multibody simulation model (MBS) is a standard part of the automotive design process. A high-fidelity model is built and often correlated against test data to increase its accuracy. Once built the MBS model can then be used for high fidelity analysis in ride comfort, handling as well as durability. Next to the MBS model, current industry practice is to develop a reduced degree of freedom model for the design and validation of control or intelligent systems. The models used in the control system design are required to execute in hardware-in-the-loop (HIL) simulations where it is necessary to run real-time. The reason for the creation of the reduced degree of freedom models so far has been that the high-fidelity or off-line model does not execute fast enough to be used in an HIL simulation.
Journal Article

Use of an Eulerian/Lagrangian Framework to Improve the Air Intake System of an Automobile with Respect to Snow Ingress

2017-03-28
2017-01-1319
A simulation approach to predict the amount of snow which is penetrating into the air filter of the vehicle’s engine is important for the automotive industry. The objective of our work was to predict the snow ingress based on an Eulerian/Lagrangian approach within a commercial CFD-software and to compare the simulation results to measurements in order to confirm our simulation approach. An additional objective was to use the simulation approach to improve the air intake system of an automobile. The measurements were performed on two test sites. On the one hand we made measurements on a natural test area in Sweden to reproduce real driving scenarios and thereby confirm our simulation approach. On the other hand the simulation results of the improved air intake system were compared to measurements, which were carried out in a climatic wind tunnel in Stuttgart.
Technical Paper

Updating of Dynamic Finite Element Models Based on Experimental Receptances and the Reduced Analytical Dynamic Stiffness Matrix

1995-05-01
951247
This paper presents a model updating method based on experimental receptances. The presented method minimises the so called ‘indirect receptance difference’. First, the reduced analytical dynamic stiffness matrix is expressed as an approximate, linearised function of the updating parameters. In a numerically stable, iterative procedure, this reduced analytical dynamic stiffness matrix is changed in such a way that the analytical receptances match the experimental receptances at the updating frequencies. The updating frequencies are a set of selected frequency points in the frequency range of interest. Some considerations about an optimal selection of the updating frequencies are given. Finally, a mixed static-dynamic reduction scheme is discussed. Dynamic reduction of the analytical dynamic stiffness matrix at each updating frequency is physically exact, but it involves a great computational effort.
Technical Paper

Uncertainty-Based Design in Automotive and Aerospace Engineering

2007-04-16
2007-01-0355
While CAE methods allow improving nominal product design using virtual prototypes, uncertainty and variability in properties and manufacturing processes lead to scatter in actual performances. Uncertainty must hence be incorporated in the CAE process to guarantee the robustness and reliability of the design. This paper presents an overview of uncertainty-based design in automotive and aerospace engineering. Fuzzy methods take uncertainty into account, whereas reliability analysis and a reliability-based design optimization framework can deal with variability. Key enabling technologies to alleviate the computational burden, such as workflow automation, substructuring and design of experiments, are discussed, and industrial applications are presented.
Technical Paper

Towards an Aspect Driven Approach for the Analysis, Evaluation and Optimization of Safety Within the Automotive Industry

2010-04-12
2010-01-0208
An approach will be presented how development projects for safety-related and software-intensive automotive systems can be controlled through the application of model-based risk assessment. Therefore specific control measures have to be developed, which represent the degree of fulfilment of several aspects of safety-related developments. The control measures are evaluated through the analysis of risk-reducing aspects, for which the process of identification and specification is described. Thus, a framework for the creation of a probabilistic and aspect-oriented risk-analysis model (AORA) for safety related projects within automotive industries is currently under development. With respect to the upcoming safety standard ISO 26262 the twofold approach focuses on both, the identification and specification of risk-reducing aspects within the development as well as the application of a probabilistic reasoning model.
Technical Paper

Time-domain Transfer Path Analysis for Transient Phenomena Applied to Tip-in/Tip-out (Shock & Jerk)

2012-06-13
2012-01-1545
Tip-in/Tip-out of the accelerator pedal generates transient torque oscillations in the driveline. These oscillations may be amplified by P/T, suspension and body modes and will eventually be sensible at the receiver side in the vehicle, for example at the seat or at the steering-wheel. The forces that are active during this transient excitation are influenced by non-linear effects in both the suspension and the power train mounts. In order to understand the contribution of each of these forces to the total interior target response (e.g. seat rail vibration) a detailed investigation is performed. Traditional force identification methods are not suitable for low-frequent, transient phenomena like tip-in/tip-out. Mount stiffness method can not be used because of non-linear effects in the P/T and suspension mounts. Application of matrix inversion method based on trimmed body vibration transfer functions is not possible due to numerical condition problems.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

The NH3 Inhibition Effect in the Standard SCR Reaction over a Commercial Fe-zeolite Catalyst for Diesel Exhaust Aftertreatment: An Experimental and Modeling Study

2011-04-12
2011-01-1319
Transient and steady-state kinetic data are herein presented to analyze the inhibiting effect of ammonia on the NH₃-SCR of NO at low temperatures over a Fe-zeolite commercial catalyst for vehicles. It is shown that in SCR converter models a rate expression accounting for NH₃ inhibition of the Standard SCR reaction is needed in order to predict the specific dynamics observed both in lab-scale and in engine test bench runs upon switching on and off the ammonia feed. Two redox, dual site kinetic models are developed which ascribe such inhibition to the spill-over of ammonia from its adsorption sites, associated with the zeolite, to the redox sites, associated with the Fe promoter. Better agreement both with lab-scale intrinsic kinetic runs and with engine test-bench data, particularly during transients associated with dosing of ammonia to the SCR catalyst, is obtained assuming slow migration of NH₃ between the two sites.
Journal Article

The Damage Operator Approach: Fatigue, Creep and Viscoplasticity Modeling in Thermo-Mechanical Fatigue

2011-04-12
2011-01-0485
In the last decades the development time of vehicles has been drastically reduced due to the application of advanced numerical and experimental methods. Specifications concerning durability and other functional attributes for every new model improve for every vehicle. In particular, for machines and components under variable multiaxial loading, fatigue evaluation is one of the most important steps in the design process. Appropriate material testing and simulation is the key to efficient life prediction. However, the life of automotive components, power plants and other high-temperature facilities depends mostly on thermo-mechanical fatigue (TMF). This is due to the normally variable service conditions, which contain the phases of startup, full load, partial load and shut-down.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Steady-State Experimental and Meanline Study of an Asymmetric Twin-Scroll Turbine at Full and Unequal and Partial Admission Conditions

2018-04-03
2018-01-0971
The use of twin-scroll turbocharger turbines has gained popularity in recent years. The main reason is its capability of isolating and preserving pulsating exhaust flow from engine cylinders of adjacent firing order, hence enabling more efficient pulse turbocharging. Asymmetrical twin-scroll turbines have been used to realize high pressure exhaust gas recirculation (EGR) using only one scroll while designing the other scroll for optimal scavenging. This research is based on a production asymmetrical turbocharger turbine designed for a heavy duty truck engine of Daimler AG. Even though there are number of studies on symmetrical twin entry scroll performance, a comprehensive modeling tool for asymmetrical twin-scroll turbines is yet to be found. This is particularly true for a meanline model, which is often used during the turbine preliminary design stage.
Technical Paper

Specifics of Daimler's new SCR system (BLUETEC) in the Diesel Sprinter Van - Certified for NAFTA 2010

2010-04-12
2010-01-1172
Beginning in 2010, Daimler's well-known Diesel Sprinter van has to fulfill the new and clearly tighter NOx emission standards of NAFTA10 (EPA, CARB). This requires an integrated approach of further engine optimizations and the implementation of an innovative exhaust aftertreatment technology. The goal was to develop an overall concept which meets simultaneously the tightened emission standards (including OBD limits) and the increasing customer demands of more power and torque without losing the high fuel efficiency of the small and highly efficient 3-liter V6 diesel engine OM642, which already has been installed in the NAFTA07 Sprinter. In the early stages of the concept phase, the most appropriate NOx aftertreatment technology and certification form (engine or vehicle) had to be selected for this specific vehicle class in the van segment with enhanced requirements to durability, economical efficiency and specific driving behavior.
Technical Paper

Sound Quality Equivalent Modeling for Virtual Car Sound Synthesis

2001-04-30
2001-01-1540
The pressure on development cycles in the automotive industry forces the acoustical engineers to create awareness of sound quality in the early stages of development, perhaps even before a physical prototype is available. Currently, designers have few tools to help them listen to their “virtual” models. For the design of a synthesis platform of in-vehicle binaural sound, the sound should be modeled with almost identical sound quality perception. A concept is presented where the total sound of a vehicle is split in a number of components, each with its own sound characteristics. These characteristics are described in a signal model that allows the analysis of an existing sound into a limited number of signal components: orders-frequency spectra, time envelopes and time recordings.
Journal Article

Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach

2009-11-02
2009-01-2679
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
X