Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

2005-04-11
2005-01-1823
To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
Technical Paper

The Impact of Aerodynamics on Vehicle Performance in a Formula SAE Racing Style Vehicle

2001-11-12
2001-01-2744
Aerodynamic drag is the force that restricts the forward velocity of a vehicle. Sources of drag are form drag, interference drag, internal flow drag, surface friction, and induced drag. Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. This paper will focus on the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. Using the Lawrence Technological University (LTU) 1999 and 2000 cars to study and evaluate various methods to reduce drag and optimize fuel economy. Theoretical and experimental methods will be used and the study will be limited to the effects of form and interference drag.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Technical Paper

Numerical Design of a Low Mass Differential Housing

1999-03-01
1999-01-0741
Lawrence Technological University's 1998 SAE Formula car needed a high performance differential assembly. The performance requirements of a competitive SAE Formula car differential are as follows: Torque sensing capabilities Perfect reliability High strength Low mass Ability to withstand inertia and shock loading Small package Leak proof housing Ability to support numerous components With these requirements in mind an existing differential was selected with the capability for torque sensing. This differential lacked the desired low mass, support, internal drive splines, and proper gearing protection. The differential was re-engineered to remedy the deficiencies. The internal gearing from the selected differential was used in an improved casing. This casing and it's position in the car, reduce the number of side-specific parts required as well as improving the performance. The new design significantly reduces the size and mass of the assembly.
Technical Paper

Innovative Graduate Program in Mechatronics Engineering to Meet the Needs of the Automotive Industry

2010-10-19
2010-01-2304
A new inter-disciplinary degree program has been developed at Lawrence Technological University: the Master of Science in Mechatronic Systems Engineering Degree (MS/MSE). It is one of a few MS-programs in mechatronics in the U.S.A. today. This inter-disciplinary program reflects the main areas of ground vehicle mechatronic systems and robotics. This paper presents areas of scientific and technological principles which the Mechanical Engineering, Electrical and Computer Engineering, and Math and Computer Science Departments bring to Mechatronic Systems Engineering and the new degree program. New foundations that make the basis for the program are discussed. One of the biggest challenges was developing foundations for mechanical engineering in mechatronic systems design and teaching them to engineers who have different professional backgrounds. The authors first developed new approaches and principles to designing mechanical subsystems as components of mechatronic systems.
Technical Paper

Dynamic Decoupling of Driveline Dynamics from NVH Driveline Dynamometer: an Industry Sponsored Senior Design Project

2015-06-15
2015-01-2347
The American Axle & Manufacturing Inc. driveline dynamometer provides immense value for experimental validation of product NVH performances. It has been intensively used to evaluate product design robustness in terms of build variations, mileage accumulation, and temperature sensitivity. The current driveline dynamometer input motor system has multiple torsional modes which create strong coupling with test part gear mesh dynamics. Mechanical Engineering seniors at Lawrence Technological University designed, fabricated, and validated a mechanism to decouple the driveline dynamics from the driveline dynamometer dynamics. The student-designed decoupler mechanism is presented with experimental validation of effectiveness in decoupling driveline dynamometer dynamics from the driveline under test.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

2000-03-06
2000-01-1156
The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

Design of Formula SAE Suspension Components

2002-12-02
2002-01-3308
This paper is an introduction to the design of suspension components for a Formula SAE car. Formula SAE is a student competition where college students conceive, design, fabricate, and compete with a small formula-style open wheel racing car. The suspension components covered in this paper include control arms, uprights, spindles, hubs, pullrods, and rockers. Key parameters in the design of these suspension components are safety, durability and weight. The 2001 Lawrence Technological University Formula SAE car will be used as an example throughout this paper.
Technical Paper

Controlled Angle Sound Transmission Loss Experiment

2003-05-05
2003-01-1630
This paper reviews how sound transmission loss (STL) of insulators is affected by gravitational and thermal effects. A special STL test fixture was designed and fabricated to quickly and accurately obtain the STL measurement of a sample oriented at various controlled angles. The STL apparatus was designed to roll into a large reverberation chamber and act as the anechoic termination for a two-microphone approach to measuring STL. The fixture was also built with the intention of studying the temperature effects on a material's STL performance. A variety of samples, including lightweight and traditional barrier decoupled insulators, were tested in the horizontal, vertical, and inverted positions to evaluate gravitational/inertial effects. Thermal effects were investigated by bringing the STL apparatus and sample to a low temperature by moving outdoors, and then rolling the system into the reverberation chamber, at normal room temperature.
Technical Paper

Assessment of a Three-Semester Mechanical Engineering Capstone Design Sequence Based on the SAE Collegiate Design Series

2019-04-02
2019-01-1126
Mechanical engineering students at Lawrence Technological University complete a five-credit hour capstone project: either an SAE collegiate design series (CDS) vehicle or an industry-sponsored project (ISP). Students who select the SAE CDS option enroll in a three-semester, three-course sequence. Each team of seniors designs, builds, and competes with their vehicle at one of the SAE CDS events. Three years after implementing major changes to the course structure and content, the three-semester capstone design sequence is revisited. Finalized learning objectives are presented and the sequence is assessed with a mix of direct, indirect, and anecdotal assessment. Student performance, as measured directly with design reports, milestones, and project completion, is good. Of the five Lawrence Tech CDS teams, only one has failed to be ready for competition since the changes were implemented.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

Aerodynamic Evaluation on Formula SAE Vehicles

2001-03-05
2001-01-1270
Aerodynamics plays an important role in the dynamic behavior of a vehicle. The purpose of this paper is to evaluate external and internal aerodynamics of the 1999 and 2000 Lawrence Technological University Formula SAE vehicles. The external aerodynamic study will be limited to form and interference drag and the evaluation of lift. The internal aerodynamics study will be limited to ram air to the intake, heat exchanger, and oil cooler.
X