Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Traction Control Applications in Engine Control

Traction control is an electronic means of reducing the wheel spin caused by the application of excessive power for the valuable grip. Wheel spin can result in loss control of the car, reduce acceleration and cause tire wear. In the front wheel tire the loss grip is experienced as underwater, where the front of the car ‘pushes’ forward, not turning as much as the driver has exposed by turning the tearing. In the rear wheels slip causing oversteer, where the rear of the car swings around, turning much sharper than the driver anticipated. The result of all these problems is that the driver starts loosing control of the vehicle, which is undesirable. With the new design of the Traction Control System, the amount of the wheel slippage is precisely controlled. In racing, this means corner can be taken constantly quicker, with system applying the maximum power possible while the driver remains in total control.
Technical Paper

Tire Longitudinal Elasticity and Effective Rolling Radii: Experimental Method and Data

To evaluate traction and velocity performance and other operational properties of a vehicle requires data on some tire parameters including the effective rolling radius in the driven mode (no torque on a wheel), the effective radii in the drive mode (torque applied to the wheel), and also the tire longitudinal elasticity. When one evaluates vehicle performance, these parameters are extremely important for linking kinematic parameters (linear velocity and tire slip coefficient) with dynamic parameters (torque and traction net force) of a tired wheel. This paper presents an experimental method to determine the above tire parameters in laboratory facilities. The facilities include Lawrence Technological University's 4x4 vehicle dynamometer with individual control of each of the four wheels, Kistler RoaDyn® wheel force sensors that can measure three forces and three moments on a wheel, and a modern data acquisition system. The experimental data are also presented in the paper.
Technical Paper

Shrinkage Analysis of a Constrained Thin Walled Injection Molded Component Using a Traditional Flatbed Scanner and Photometric Techniques

A study was performed to determine the effects of varying the wall thickness and material glass fiber concentration for parallel and perpendicular shrinkage rates for a constrained thin-walled box shaped component. An analysis of the shrinkage for the bottom portion of a 3 dimensional constrained thin walled injection molded component was performed using measurements made from bitmap images of the components that were obtained from a traditional flatbed scanner. The shrinkage rates were determined by comparing mold cavity hatch lines to the correlating transposed hatch lines on the plastic molded component. The perpendicular and parallel shrinkage rates were determined and are discussed as a function of thickness and glass fiber content. A wide range of processing control factors was used in the study.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

Controlled Angle Sound Transmission Loss Experiment

This paper reviews how sound transmission loss (STL) of insulators is affected by gravitational and thermal effects. A special STL test fixture was designed and fabricated to quickly and accurately obtain the STL measurement of a sample oriented at various controlled angles. The STL apparatus was designed to roll into a large reverberation chamber and act as the anechoic termination for a two-microphone approach to measuring STL. The fixture was also built with the intention of studying the temperature effects on a material's STL performance. A variety of samples, including lightweight and traditional barrier decoupled insulators, were tested in the horizontal, vertical, and inverted positions to evaluate gravitational/inertial effects. Thermal effects were investigated by bringing the STL apparatus and sample to a low temperature by moving outdoors, and then rolling the system into the reverberation chamber, at normal room temperature.
Technical Paper

An Adjustable Aluminum Differential

The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

All-Wheel Drive Vehicle Energy Efficiency Evaluation

All-wheel drive (AWD) vehicle performance considerably depends not only on total power amount needed for the vehicle motion in the given road/off-road conditions but also on the total power distribution among the drive wheels. In turn, this distribution is largely determined by the driveline system and its mechanisms installed in power dividing units. They are interwheel, interaxle reduction gears, and transfer cases. The paper presents analytical methods to evaluate the energy and, accordingly, fuel efficiency of vehicles with any arbitrary number of the drive wheels. The methods are based on vehicle power balance equations analysis and give formulas that functionally link the wheel circumferential forces with slip coefficients and other forces acting onto an AWD vehicle. The proposed methods take into consideration operational modes of vehicles that are tractive mode, load transportation, or a combination of both.