Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

NOx Abatement for Diesel Engines: Reductant Effects; Engine vs. Reactor Tests

1996-10-01
962043
Catalytic reduction of NOx from heavy duty diesel engines via addition of reductant to the exhaust is accompanied by a substantial exotherm in the catalyst bed which does not occur, for example, in a diesel oxidation catalyst. Engine tests show that thermal management in the aftertreatment system is required for optimum reductant use and maximum NOx conversion by the low-temperature (200-300°C) catalyst NSP-5, but of less importance with the high temperature (> 350°C) Catalyst A. Understanding thermal effects is also important for reconciling test results in the near-adiabatic environment of a full-sized catalyst on an engine with the near-isothermal one of a test piece in a laboratory reactor. The effects of reductant type and concentration on NOx conversion on NSP-5 were shown to result in part from non-steady state behavior of the catalyst during steady state engine operation.
Technical Paper

Abatement of NOx from Diesel Engines:Status and Technical Challenges

1995-02-01
950747
The technical issues related to NOx abatement for diesel applications are summarized. Data on improved catalysts and a novel approach which involves temporarily trapping of NOx before reduction are presented. New high temperature lean NOx materials have been identified which have better hydrothermal stability than the state of the art Cu/ZSM-5. One of these materials, Catalyst A, was shown to reduce the NOx emitted from a 2.5 L diesel engine at temperatures ≥ 350°C using injected diesel fuel as a reductant. Catalyst A also showed reasonably good durability after aging for 500 h at ca. 500°C on a 14 L diesel truck engine. Pt/Al2O3, a low temperature lean NOx reduction catalyst (200-300°C), demonstrated fairly good performance after 125 h of aging on a 4 L diesel truck engine, however sulfate make and N2O formation are high on this material. New low temperature NOx traps show promise for transient removal of NOx below 200-400°C.
X