Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

The Next Generation “Voltec” Extended Range EV Propulsion System

2015-04-14
2015-01-1152
The Chevrolet Volt is an electric vehicle (EV) with extended-range (ER) that is capable of operation on battery power alone, and on power generated by an on-board gasoline engine after depletion of the battery charge. For 2016, GM has developed the next generation of the Volt vehicle and “Voltec” propulsion system. Building on the experience of the first generation Volt, the second generation targeted improved all-electric range, improved charge sustaining fuel economy, and improved performance. All of this was to be accomplished while maintaining the EV character of the first generation Volt which customers clearly valued. This paper describes the next generation “Voltec” system and the realized improvements in efficiency and performance. The features of the propulsion system components, including energy storage, transaxle, electric motors and power electronics, on-board charging, and engine are described and compared with the previous generation.
Technical Paper

The Importance of Analysis of Electrical Parameters for Design of Analog Circuits in Automotive Modules

2012-10-02
2012-36-0209
The intention of this paper is to discuss the importance of analysis of some electrical parameters in order to design analog circuits in electronic modules, including automotive ones. Today, the challenge is to have devices which consume less power, high performance and higher integration density, so that it explains why such analysis is crucial to achieve better performances and meet the desired results.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Technical Paper

TECH 1 Interactive Diagnostic Tester

1986-08-01
861108
Automotive electronic systems are becoming increasingly complex and servicing these systems is difficult and costly. These same electronics, however, when coupled with interactive diagnostic testers can provide opportunities for not only self-diagnosis but also for significantly improved overall vehicle diagnostic testing. General Motors has established a three-tiered system of diagnostic testing with Level I testing accomplished by on-board diagnostics and Levels II and III employing external test equipment utilizing a high degree of interactive diagnostic testing. A low cost handheld diagnostic tester called the TECH 1 has been developed to support Level II testing of GM vehicles by technicians in dealerships and aftermarket service centers.
Technical Paper

Metrics for Evaluating Electronic Control System Architecture Alternatives

2010-04-12
2010-01-0453
Current development processes for automotive Electronic Control System (ECS) architectures have certain limitations in evaluating and comparing different architecture design alternatives. The limitations entail the lack of systematic and quantitative exploration and evaluation approaches that enable objective comparison of architectures in the early phases of the design cycle. In addition, architecture design is a multi-stage process, and entails several stakeholders who typically use their own metrics to evaluate different architecture design alternatives. Hence, there is no comprehensive view of which metrics should be used, and how they should be defined. Finally, there are often conflicting forces pulling the architecture design toward short-term objectives such as immediate cost savings versus more flexible, scalable or reliable solutions. In this paper, we propose the usage of a set of metrics for comparing ECS architecture alternatives.
Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

2002-10-21
2002-01-2884
The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Journal Article

An Efficient Implementation of the SM Agreement Protocol for a Time Triggered Communication System

2010-10-19
2010-01-2320
FlexRay is a time triggered automotive communication protocol that connects ECUs (Electronic Control Units) on which distributed automotive applications are executed. If exact agreement (e.g. on physical values measured by redundant sensors on different ECUs) must be reached in the presence of asymmetric communication faults, a byzantine agreement protocol like Signed Messages (SM) can be utilized. This paper gives examples of how byzantine faults can emerge in a FlexRay-based system and proposes optimizations for a FlexRay-specific implementation of the SM protocol. The protocol modifications allow for a reduction in the number of protocol messages under a slightly relaxed fault model, as well as for a reduction in the number of messages to be temporarily stored by the ECUs.
Technical Paper

Adding Unified Diagnostic Services over CAN to an HIL Test System

2011-04-12
2011-01-0454
The increase in the number of electronic control units (ECUs) in the modern vehicle, combined with increased software complexity and more distributed controls has led to an extreme testing challenge when it comes to the verification and validation of body-control ECUs. In general test engineers have to deal with more software configurations, more closed-loop interaction between ECUs, and more fault conditions than ever before. By adding Unified Diagnostic Services (UDS) over CAN to a Hardware-In-The-Loop (HIL) test system, Lear was able to increase test automation and provide wider test coverage by automating the ECU flashing process, adding diagnostic identifiers and trouble codes to their test scripts, and providing a quick and easy way to exercise ECU I/O. Lear chose to implement their HIL testers on the open PXI[1] hardware platform, utilizing National Instruments' VeriStand software framework.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

A Systems Engineering Approach to Verification of Distributed Body Control Applications Development

2010-10-19
2010-01-2328
An effective methodology for design verification and product validation is always a key to high quality products. As many body control applications are currently implemented across multiple ECUs distributed on one or more vehicle networks, verification and validation of vehicle-level user functions will require availability of both the vehicle networks and multiple ECUs involved in the implementation of the user functions. While the ECUs are usually developed by different suppliers and vehicle networks' infrastructure and communication protocols are normally maintained and developed by the OEM, each supplier will be faced with a similar challenge - the ECU being developed cannot be fully verified and tested until all other ECUs and their communication networks are available in the final development stage.
X