Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicular Radar Speedometer

1973-02-01
730125
Certain problems associated with conventional vehicular speed sensing, such as wheel slip, wheel lock, and variable rolling radius, can be alleviated by employing microwave speed sensing. It is expected that true speed sensing will augment a number of automotive and other ground transportation applications. An experimental, two-horn, 55 GHz continuous wave radar speedometer designed to measure true ground speed in the presence of vehicular perturbations is described; the system has an ultimate design frequency of 60 GHz. An Impatt diode, solid-state transmitter was incorporated in this design because of its inherent advantages. The RF portion of the transmitter-receiver unit, including the dipole feed, is housed on a single microstrip circuit on an alumina substrate 1/2 X 1/4 in (12.7 X 6.35 mm). Vertically polarized beams incident at angles of 35 deg with respect to the horizontal system were chosen as a design compromise.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

Static Electricity in Automotive Interiors

1999-03-01
1999-01-0631
Seats and carpets were evaluated for generating static charges on vehicle occupants. Active measures that eliminate or reduce static accumulation, and passive measures that dissipate static charge in a controlled manner were investigated. The active measures include using durable anti-static finishes or conductive filaments in seating fabrics. The passive measures include adopting conductive plastics in a steering wheel, seat belt buckle release button, or door opening handle. The effectiveness of these measures was tested in a low humidity environment.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
Technical Paper

Simulation of the Hybrid III Dummy Response to Impact by Nonlinear Finite Element Analysis

1994-11-01
942227
The Hybrid III dummy is an anthropomorphic (humanlike) test device, generally used in crashworthiness testing to assess the extent of occupant protection provided by the vehicle structure and its restraint systems in the event of vehicle crash. Lumped-parameter analytical models are commonly used to simulate the dummy response. These models, by virtue of their limited number of degrees of freedom, can neither represent accurate three-dimensional dummy geometry nor detailed structural deformations. In an effort to improve the state-of-the-art in analytical dummy simulations, a set of finite element models of the Hybrid III dummy segments - head, neck, thorax, spine, pelvis, knee, upper extremities and lower extremities - were developed. The component models replicated the hardware geometry as closely as possible. Appropriate elastic material models were selected for the dummy “skeleton”, with the exterior “soft tissues” represented by viscoelastic materials.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
Technical Paper

SIR Sensor Closure Time Prediction for Frontal Impact Using Full Vehicle Finite Element Analysis

1993-03-01
930643
This paper describes an analytical method to predict the sensor closure time for an airbag (Supplemental Inflatable Restraint - SIR) system in frontal impacts. The analytical tools used are the explicit finite element code, an in-house sensor closure time prediction program, and a full vehicle finite element model. Nodal point information obtained from the full vehicle finite element simulation is used to predict the sensor closure time of the airbag system. This analytical method can provide the important crash signature information for a SIR system development of a new vehicle program. In this paper, 0-degree frontal impacts at four different impact speeds with two different bumper energy absorption systems are studied using the non-linear finite element computer program DYNA3D. It is concluded that this analytical method is very useful to predict the SIR sensor closure time.
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
Technical Paper

Rollover Sensor Signature Test Development

2007-04-16
2007-01-0375
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper

Results of the Motor Vehicle Manufacturers Association Component and Full-Vehicle Side Impact Test Procedure Evaluation Program

1985-01-01
856087
This paper presents an extensive research program undertaken to develop improved side impact test methods. The development of a component side impact test device along with an associated test procedure are reviewed. The results of accident data analysis techniques to define anatomical areas most likely to be injured during side impact and definition of test device response corridors based on human surrogate testing conducted by the Association Peugeot/Renault and the University of Heidelberg are discussed. The relationship of response corridors and accident data analysis in earlier phases of the project resulted in definition and development of a component side impact test device to represent the human thorax. A test program to evaluate and compare component and full-vehicle test results is presented.
Technical Paper

Responses of Animals Exposed to Deployment of Various Passenger Inflatable Restraint System Concepts for a Variety of Collision Severities and Animal Positions

1982-01-01
826047
This paper summarizes the results of tests conducted with anesthetized animals that were exposed to a wide range of passenger inflatable restraint cushion forces for a variety of impact sled - simulated accident conditions. The test configurations and inflatable restraint system concepts were selected to produce a broad spectrum of injury types and severities to the major organs of the head, neck and torso of the animals. These data were needed to interpret the significance of the responses of an instrumented child dummy that was being used to evaluate child injury potential of the passenger inflatable restraint system being developed by General Motors Corporation. Injuries ranging from no injury to fatal were observed for the head, neck and abdomen regions. Thoracic injuries ranged from no injury to critical, survival uncertain.
Technical Paper

Racing Car Restraint System Frontal Crash Performance Testing

1994-12-01
942482
This paper presents the results of a series of over 30 impact sled simulations of racing car frontal crashes conducted as part of the GM Motorsports Safety Technology Research Program. A Hyge™ impact sled fitted with a simulated racing car seat and restraint system was used to simulate realistic crash loading with a mid-size male Hybrid III dummy. The results of tests, in the form of measured loads, displacements, and accelerations, are presented and comparisons made with respect to the levels of these parameters seen in typical passenger car crash testing and to current injury threshold values.
Technical Paper

Part Two - Dummies - Description and Basis of a Three-Year-Old Child Dummy Or Evaluating Passenger Inflatable Restraint Concepts

1982-01-01
826040
A primary concern in the development of a passenger inflatable restraint system is the possibility that a child could be in the path of the deploying cushion either due to initial position at the time of an accident or due to precrash braking accompanying an accident. Previous studies by General Motors and Volvo have indicated that serious injuries to children are possible if the cushion/child interaction forces are not controlled by system design. This paper describes an instrumented child dummy which was developed to provide measurements of the various cushion/child interaction forces. An analysis is given describing the types of injuries which could be associated with the various types of interaction forces. These results were used to develop appropriate dummy instrumentation for indicating the severity of the cushion/child interaction. A description of the modifications made to an existing three-year-old child dummy are described.
Technical Paper

Occupant Energy Management Technique for Restraint System Analysis and Design -Theory and Validation

1992-09-01
922082
In this paper, the concept of ridedown analysis is extended to provide the total occupant energy and ridedown energy as functions of time. The difference between the total occupant energy and the energy absorbed by the front structure represents the energy which is dissipated by deforming the components of the restraint system. This analysis allows an improved understanding of the restraint system as a whole, and how its components interact with each other and with the front structure of the car to dissipate the occupant's energy throughout the crash event.
Technical Paper

Interpretations of the Impact Responses of a 3-Year-Old Child Dummy Relative to Child Injury Potential

1982-01-01
826048
An analysis is presented that was used to interpret the significance of response measurements made with a specially instrumented, 3-year-old child dummy that was used to evaluate child injury potential of the second-generation, passenger inflatable restraint system that was being developed by General Motors Corporation. Anesthetized animals and a specially instrumented child dummy, both 3-year-old child surrogates, were exposed to similar inflating-cushion, simulated collision environments. The exposure environments were chosen to produce a wide spectrum of animal injury types and severities, and a corresponding broad range of child dummy responses. For a given exposure environment, the animal injury severity ratings for the head, neck, thorax and abdomen are paired with dummy response values corresponding to these body regions.
Technical Paper

Fatal Crashes of Female Drivers Wearing Safety Belts

1996-02-01
960459
Fatal crash circumstances for 48 belted female drivers were studied in-depth and compared to those of 83 belted male drivers in a similar population of vehicles. Women had a higher incidence of crashes on slippery roads, during lane changes and passing maneuvers than men who had a higher rate of aggressive driving and speed related crashes (χ2 = 10.47, p < 0.001). Driver-side damage was significantly more frequent in female than male crashes (χ2 = 5.74, p < 0.025) and women had a higher fraction of side impacts (45.9% v 31.4%) and crashes during daylight (87.0% v 72.3%, χ2 = 3.65, p < 0.05) than men. Women also had a higher fraction of potentially avoidable crashes than men (57.5% v 39.0%) and a lower involvement related to aggressive driving (10.6% v 25.6%). These differences were statistically significant (χ2 = 5.41, p < 0.025).
Technical Paper

Experimental Analysis of Aspirating Airbag Units

1999-03-01
1999-01-0436
Aspirating airbag modules are unique from other designs in that the gas entering the airbag is a mixture of inflator-delivered gas and ambient-temperature air entrained from the atmosphere surrounding the module. Today's sophisticated computer simulations of an airbag deployment typically require as input the mass-flow rate, chemical composition and thermal history of the gas exiting the canister and entering the airbag. While the mass-flow rate and temperature of the inflator-delivered gas can be obtained from a standard tank test, information on air entrainment into an aspirated canister is limited. The purpose of this study is to provide quantitative information about the aspirated mass-flow rate during airbag deployment. Pressure and velocity measurements are combined with high-speed photography in order to gain further insight into the relationship between the canister pressure, the rate of cabin-air entrainment and the airbag deployment.
Technical Paper

Evaluation of the Hybrid III Dummy Interactions with Air Bag in Frontal Crash by Finite Element Simulation

1995-11-01
952705
A deformable finite element dummy model was used to simulate air bag interaction with in-position passenger side occupants in frontal vehicle crash. This dummy model closely simulates the Hybrid III hardware with respect to geometry, mass, and material properties. Test data was used to evaluate the validity of the model. The calculated femur loads, chest acceleration and head acceleration were in good agreement with the test data. A semi-rigid dummy model (with rigid chest) was derived from the deformable dummy to improve turnaround time. Simulation results using the semi-rigid dummy model were also in reasonable agreement with the test data. For comparison purpose, simulations were also performed using PAMCVS, a hybrid code which couples the finite element code PAMCRASH with the rigid body occupant code. The deformable dummy model predicted better chest acceleration than the other two models.
Technical Paper

Effect of Seat Back Restriction on Head, Neck and Torso Responses of Front Seat Occupants When Subjected to a Moderate Speed Rear-Impact

2021-04-06
2021-01-0920
During high-speed rear impacts with delta-V > 25 km/h, the front seats may rotate rearward due to occupant and seat momentum change leading to possibly large seat deflection. One possible way of limiting this may be by introducing a structure that would restrict large rotations or deformations, however, such a structure would change the front seat occupant kinematics and kinetics. The goal of this study was to understand the influence of seat back restriction on head, neck and torso responses of front seat occupants when subjected to a moderate speed rear-impact. This was done by simulating a rear impact scenario with a delta-V of 37.4 km/h using LS-Dyna, with the GHBMC M50 occupant model and a manufacturer provided seat model. The study included two parts, the first part was to identify worst case scenarios using the simplified GHBMC M50-OS, and the second part was to further investigate the identified scenarios using the detailed GHBMC M50-O.
X