Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Creating a Biofidelic Seating Surrogate

1999-03-01
1999-01-0627
In order to more accurately simulate the load distributions and histories experienced by automotive seats in field use, more biofidelic motion and loading devices are needed. A new test dummy was developed by Lear Corporation and First Technology Safety Systems. This dummy uses exact skeletal geometry encased in a one-piece seamless mold with contours based on ASPECT data. A prototype was constructed and tested to demonstrate the efficacy of the concept. The skeleton and contour molds were created from CAD-generated rapid prototypes. The flesh was carefully formulated to have the mechanical properties of bulk muscular tissue in a state of moderate contraction, using data from the literature. This design allows much greater accuracy in reproducing human loads than was ever possible previously. The design has applications in durability, vibration and comfort testing.
Technical Paper

Beyond Percentiles: An Examination of Occupant Anthropometry and Seat Design

2004-03-08
2004-01-0375
Size is one of the most basic and important factors when determining fit for people. Many methods used to test occupant fit and accommodation rely on a traditional set of three different sized manikins - 5th, 50th and 95th percentiles. Anthropometry, the study of human size dimensions, however, is a complex multivariate problem. Real people, real drivers are a mixture of dimensions tall thin, short, stout, etc. This paper examines population anthropometry and these traditional percentiles specific to vehicular seat design.
Technical Paper

Benefits of Active Head Restraints for Compliance to Rear Impact Test Requirements

2007-04-16
2007-01-0371
The International Insurance Whiplash Protection Group (IIWPG) rating system has driven improvements in head restraint (head restraint) geometry and the addition of a dynamic test has helped address head restraint construction parameters. FMVSS 202a Static imposes more stringent requirements on backset and stiffness and the Dynamic option relaxes the potentially uncomfortable backset requirement if angular head movement can be limited to a specified level. These two requirements utilize different crash dummies and measurement parameters. The BioRID2 ATD (IIWPG) rewards a seat with good torso penetration to reduce neck loading. Seats with high comfort content tend to rate low. The Hybrid III-50 ATD (FMVSS) rewards limited lower torso penetration to reduce head rotation relative to the torso. Current production seats without active head restraints (AHR) are difficult to optimize to meet both the requirements of FMVSS 202a Dynamic and earn an IIWPG rating of Good.
Technical Paper

Automotive Seating Foam: Subjective Dynamic Comfort Study

1999-03-01
1999-01-0588
Many studies have been done to objectively measure car seat foam properties and correlate them to comfort performance. Typically, the vibration characteristics (namely transmissibility) of the foam cushion are measured. It has been generally accepted that low natural frequency equates to better comfort. However, no subjective studies have been done to verify that humans can feel the vibration differences that are measured. Also, the measured differences of the foam may not be detectable once the foam is built into a complete seat. Three different foam formulations utilizing MDI (methylene diphenyl diisocyanate) and TDI (toluene diisocyanate) technology were evaluated for vibration characteristics. The foams were then submitted to subjective human testing and objective lab testing after being built into seats. The subjective testing was done using a typical ride and drive evaluation where people were interviewed about the comfort of the seat while driving over various road conditions.
Technical Paper

A New Dummy for Vibration Transmissibility Measurement in Improving Ride Comfort

1999-03-01
1999-01-0629
Continuing effort in measuring human vibration response results in a new design of vibration comfort dummy. The difference between this new dummy and other mechanical dummies is that (1) it uses a soft human-tissue like lower torso so it matches compliance better than the previous ones, and (2) it utilizes the spring and damping characteristics of the compliant lower torso. The lower torso is integrated with a spring-mass load simulating the top body of human so that the integrated dummy consists of two parts. This unique design greatly improves the accuracy and stability of transmissibility measurement and provides a direct application tool in seat prototype development. The results measured with dummy are compared with that measured with 3 human subjects in different percentiles and good match is found in the first transmissibility resonance and overall vibration response.
X