Refine Your Search




Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Waste and Hygiene Compartment for the International Space Station

The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Utilizing Exploration Life Support Technology on ISS - a Bold New Approach

A new life support approach is proposed for use on the International Space Station (ISS). This involves advanced technologies for water recovery and air revitalization, tested at the Johnson Space Center (JSC), including bioprocessing, reverse-osmosis and distillation, low power carbon dioxide removal, non-expendable trace contaminant control, and carbon dioxide reduction.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere, Part 1

Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on applicable air-quality standards, measurements of pollutant concentrations, and crew reports of air quality. Samples of air were obtained during ingress and egress of the Zarya and Unity modules on missions 2A and 2A.1. The results from 2A suggest that trace pollutants were at safe levels and that there was good air exchange between the modules. Results from the 2A.1 flight also showed that trace pollutants were at acceptable concentrations; however, there was evidence of inadequate mixing between the modules during the hatch-open operations. Furthermore, the 2A.1 crew reported after the flight that the air quality seemed to cause symptoms during their operations in Zarya, particularly when more than one crewmember was working inside open panels for some time.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere with Emphasis on Metox Canister Regeneration

Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples returned from ISS on flights 8A, UF2, 9A, and 11A were analyzed for trace pollutants. On average, the air during this period of operations was safe for human respiration. However, about 3 hours into the regeneration of 2 Metox canisters in the U.S. airlock on 20 February 2002 the crew reported an intolerable odor that caused them to stop the regeneration, take refuge in the Russian segment, and scrub air in the U.S. segment for 30 hours. Analytical data from grab samples taken during the incident showed that the pollutants released were characteristic of nominal air pollutants, but were present in much higher concentrations.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere from Mission 5A to 8A

There are many sources of air pollution that can threaten air quality during space missions. The International Space Station (ISS) is an extremely complex platform that depends on a multi-tiered strategy to control the risk of excessive air pollution. During the seven missions surveyed by this report, the ISS atmosphere was in a safe, steady-state condition; however, there were minor loads added as new modules were attached. There was a series of leaks of octafluoropropane, which is not directly toxic to humans, but did cause changes in air purification operations that disrupted the steady state condition. In addition, off-nominal regeneration of metal oxide canisters used during extravehicular activity caused a serious pollution incident.
Technical Paper

The State of ISS ATCS Design, Assembly and Operation

The International Space Station (ISS) Active Thermal Control System (ATCS) (Ref. 1,2) has changed over the past several years to address problems and to improve its assembly and operation on-orbit. This paper captures the ways in which the Internal (I) ATCS and External (E) ATCS have changed design characteristics and operations both for the system currently operating on-orbit and the new elements of the system that are about to be added and/or activated. The rationale for changes in ATCS design, assembly and operation will provide insights into the lessons learned during ATCS development. The state of the assembly of the integrated ATCS will be presented to provide a status of the build-up of the system. The capabilities of the on-orbit system will be presented with a summary of the elements of the ISS ATCS that are functional on-orbit plus the plans for launch of remaining parts of the integrated ISS ATCS.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System

The assembly complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the U.S. and International partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Waste Management (WM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A comprehensive summary of resources consumed by the U.S.
Technical Paper

Static Feed Water Electrolysis System for Space Station O2 and H2 Generation

Long-term manned operation of NASA's Space Station will dictate use of regenerative processes for the revitalization of the Spacecraft atmosphere. An alkaline Static Feed Water Electrolysis System (SFWES) is being developed by Life Systems, Inc. and NASA to generate metabolic oxygen (O2) for the crew, provide hydrogen (H2) for reduction of concentrated carbon dioxide (CO2) and compensate for O2 lost overboard due to Space Station leakage. The SFWES employs highly efficient electrodes with rugged unitized cell construction. Integrated mechanical components and advanced automated Control/Monitor Instrumentation (C/M I) are used to reduce system complexity while enhancing overall reliability and maintainability. Crew size and the unique environment of space drive the system design.
Technical Paper

Static Feed Electrolyzer Technology Advancement for Space Application

The Static Feed Electrolyzer (SFE) is being developed by the National Aeronautics and Space Administration (NASA) through Life Systems, Inc. (Life Systems) as part of NASA's effort to mature water electrolysis technology for application in the Space Station Environmental Control/Life Support System (ECLSS), Propulsion and Reboost System, Extravehicular Activity (EVA) and Electric Power System (EPS). The water electrolysis process generates metabolic oxygen (O2) for the crew cabin, EVA backpacks and air lock, and provides reactants for carbon dioxide (CO2) removal, CO2 reduction, propulsion/reboost systems and fuel cell electric power generation. The use within all of these applications will make water electrolysis a fundamental utilitylike technology for the Space Station.
Technical Paper

Space Station Environmental Control/Life Support System Engineering

The Space Station requirements are divided into eleven systems. One of these systems, the Environmental Control/Life Support System (ECLSS) is further divided into seven functional categories as follows: Atmosphere Revitalization System, Atmosphere Pressure and Composition Control System, Module Temperature and Humidity Control System, Water Management System, Waste Management System, EVA Support and Safe Haven. The paper reviews the requirements for ECLSS in terms of the initial and growth operational capabilities of the Reference Space Station architecture. The paper reviews some of the results of a systems engineering study under way. Both regenerative and nonregenerative ECLSS techniques are reviewed. A design for all of the primary and backup technologies was established so that accurate trade studies could be performed. Each technology design started at a common interface condition for competing technologies.
Technical Paper

Space Shuttle Crew Compartment Debris/Contamination

Debris in the Orbiter crew compartment of early Shuttle missions created crew health concerns and physiological discomfort, and was the cause of some equipment malfunctions. Debris from Orbiters during flight and processing was analyzed, quantized, and evaluated to determine its source. Records were kept on the amount of debris vacuumed by the crew during on-orbit cleaning and the amount found on air-cooled avionics boxes during ground turnaround. After ground turnaround operations at Kennedy Space Center and Palmdale were reviewed from a facility, materials use, and materials control standpoint, the following remedial steps were taken.