Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

2006-07-17
2006-01-2156
For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.
Technical Paper

The Advanced Life Support Human-Rated Test Facility: Testbed Development and Testing to Understand Evolution to Regenerative Life Support

1996-07-01
961592
As part of its integrated system test bed capability, NASA's Advanced Life Support Program has undertaken the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. This facility--the Advanced Life Support Human-Rated Test Facility (HRTF) is currently being built at the Johnson Space Center. The HRTF is comprised of a series of interconnected chambers with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system will consist of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated command and control functions. Currently, a portion of this multichamber facility has been constructed and is being outfitted with basic utilities and infrastructure.
Technical Paper

Removal of Low Levels of Ammonium Ion From pacecraft Recycled Water

1999-07-12
1999-01-2119
Poly (vinyl chloride) (PVC) matrix membranes which incorporate the ionophore nonactin have been evaluated as cation exchange membranes for ammonium ion transport in an electrolytic cell configuration. Interest exists for the development of cation selective membranes for removal of low levels (<200ppm) of ammonium ions commonly found in recycled effluent streams in such diverse applications as expected in a Space Station and commercial fisheries. Ammonium ions are generated as a decomposition product of urea and over time build up in concentration, thus rendering the water unsuitable for human consumption. Nonactin is commonly used in a PVC matrix for ion-selective electrodes.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

1997-07-01
972550
Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Progress on Development of the Advanced Life Support Human-Rated Test Facility

1995-07-01
951691
NASA's Advanced Life Support Program has included as part of its long-range planning the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. As the designated NASA Field Center responsible for integration and testing of advanced life support systems, Johnson Space Center has undertaken the development of such a facility--the Advanced Life Support Human-Rated Test Facility (HRTF). As conceived, the HRTF is an interconnected five-chamber facility with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system which sustains the crew consists of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated control and monitoring functions.
Technical Paper

NASA's Approach to Integrated System Testing of Regenerative Life Support Systems

1995-07-01
951494
Integrating physicochemical and biological technologies into a regenerative life support system is a complex technical challenge. NASA recognizes that the depth and breadth of the challenge warrants a comprehensive investigation. NASA is implementing several ground-based projects to look at different systems integration issues. The combined efforts of these activities will enable NASA to develop regenerative life support systems for human exploration of the solar system in the 21st century. This paper provides an overview of NASA's overall approach to ground testing of integrated regenerative life support systems.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

Education Payload Operations Kit C: A Miniature, Low ESM Hobby Garden for Space-Based Educational Activities

2007-07-09
2007-01-3067
The wonder of space exploration is a sure way to catch the attention of students of all ages, and space biology is one of many sciences critical to understanding the spaceflight environment. Many systems used in the past for space-to-classroom biology activities have required extensive crew time and material resources, making space-linked education logistically and financially difficult. The new Education Payload Operations Kit C (EPO Kit C) aims to overcome obstacles to space-linked education and outreach by dramatically reducing the resources required for educational activities in plant space biology that have a true spaceflight component. EPO Kit C is expected to be flown from STS-118 to the International Space Station in June 2007. NASA and several other organizations are currently planning an outreach program to complement the flight of EPO Kit C.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
Technical Paper

Control of Air Revitalization Using Plants: Results of the Early Human Testing Initiative Phase I Test

1996-07-01
961522
The Early Human Testing Initiative (EHTI) Phase I Human Test, performed by the Crew and Thermal Systems Division at Johnson Space Center, demonstrated the ability of a crop of wheat to provide air revitalization for a human test subject for a 15-day period. The test demonstrated three different methods for control of oxygen and carbon dioxide concentrations for the human/plant system and obtained data on trace contaminants generated by both the human and plants during the test and their effects on each other. The crop was planted in the Variable Pressure Growth Chamber (VPGC) on July 24, 1995 and the test subject entered the adjoining airlock on day 17 of the wheat's growth cycle. The test subject stayed in the chamber for a total of 15 days, 1 hour and 20 minutes. Air was mixed between the plant chamber and airlock to provide oxygen to the test subject and carbon dioxide to the plants by an interchamber ventilation system.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Assessment of Microbial Community Variability in Replicate Tubular Nitrifying Bioreactors using PCR and TRFLP Analysis

2003-07-07
2003-01-2511
Bioregenerative life support systems (BLSS) may be necessary for long-term space missions due to the high costs of lifting supplies and equipment into orbit. Much of the recycling to be done in a BLSS involves microbial activity. Although most studies to date have used a culture-based approach to characterize bacteria in BLSS under development, recently work has begun utilizing non-culture-based, DNA approaches to elucidate which microbes are present. In this study, we investigated whether replicate reactors develop replicate microbial communities using a 16S rRNA gene approach and terminal restriction length polymorphism analysis for tubular, nitrifier reactors in use at JSC. Our result suggests that both individual reactor and temporal signals can be detected in the microbial populations. This information may lead to optimization of inoculation procedures and reactor operations conditions to increase predictability and reliability of biological systems.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
X