Refine Your Search

Topic

Author

Search Results

Technical Paper

Verification and Validation of Complex Systems

2011-10-18
2011-01-2530
This paper explores the problem of complex safety/security critical software Validation and Verification (V&V). Current methods of V&V, which certify that the software is fit for use, require a significant amount of touch labor - future complex software developments such as NextGen Air Traffic Control will face cost hurdles so high that it may not be deployable. We will take the current V&V technology beyond formal methods (the current state of the art), reducing the V&V problem to an NP-Hard optimization problem solvable by emerging Adiabatic Quantum Computing (AQC) hardware and processing methods. The Quantum V&V (QVV) approach can go beyond software V&V, and can span the entire complex system.
Technical Paper

Trade Study for a Mars Surface Mission Bulk Commodity Supply Scenario: Processed Peanut Oil Versus Bulk Oil

2006-07-17
2006-01-2071
A comparison of resource cost was made between processed peanut oil and a bulk supply of peanut oil within a reference menu using nominal yield values from literature and equivalency factors from the Exploration Life Support (ELS) Baseline Values and Assumptions Document (BVAD). Results of the comparison show a potential mass savings of up to 496.3 kg if a bulk supply of oil were to replace processed peanut oil within identified recipes. Direct comparison of processed peanut oil and bulk oil commodities shows the cost-to-launch value for processed peanut oil will be 3.2 times greater than a bulk supply. This replacement would also remove 164.4 kg of solid waste generated through peanut processing. These values and the general versatility of a bulk supply of oil indicate that recipes under the bulk commodity supply scenario should use a variety of oils.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Journal Article

The Orion Air Monitor; an Optimized Analyzer for Environmental Control and Life Support

2008-06-29
2008-01-2046
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
Technical Paper

The Orion Air Monitor Performance Model; Dynamic Simulations and Accuracy Assessments in the CEV Atmospheric Revitalization Unit Application

2009-07-12
2009-01-2521
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper

Testing of the Prototype Plant Research Unit Subsystems

1996-07-01
961507
The Plant Research Unit (PRU) is currently under development by the Space Station Biological Research Project (SSBRP) team at NASA Ames Research Center (ARC) with a scheduled launch in 2001. The goal of the project is to provide a controlled environment that can support seed-to-seed and other plant experiments for up to 90 days. This paper describes testing conducted on the major PRU prototype subsystems. Preliminary test results indicate that the prototype subsystem hardware can meet most of the SSBRP science requirements within the Space Station mass, volume, power and heat rejection constraints.
Technical Paper

Terrestrial EVA Suit = FireFighter's Protective Clothing

1999-07-12
1999-01-1964
Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.
Technical Paper

Supersonic Jet Design, Manufacturing, and Testing for an Advanced Technology Spacesuit Ejector

1999-07-12
1999-01-1996
Two types of supersonic jets, long and short, were designed for an advanced technology spacesuit ejector. Previously, a sonic jet was used in the ejector to improve its performance by reducing oxygen flow through thejetin order to achieve the required suit circulation. The manufacturing of long and short supersonic jets was a challenge which was met successfully by the Miniature Manufacturing Laboratory at NASA/JSC. The jets were tested and their performance was compared with the sonic jet, and it was found that both jets showed improved performance by achieving higher ejector mass ratios.
Technical Paper

Smoke Detection for the Orion Crew Exploration Vehicle

2009-07-12
2009-01-2542
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Technical Paper

Project Orion, Environmental Control and Life Support System Integrated Studies

2008-06-29
2008-01-2086
Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.
Technical Paper

Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

2002-04-16
2002-01-1550
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a “glass display” that also included advanced flight symbology, such as a velocity vector.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972417
The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
Technical Paper

Online Project Information System (OPIS) Description, Annual Reporting Outcomes, and Resulting Improvements

2009-07-12
2009-01-2513
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Technical Paper

Noncondensible Gas, Mass, and Adverse Tilt Effects on the Start-up of Loop Heat Pipes

1999-07-12
1999-01-2048
In recent years, loop heat pipe (LHP) technology has transitioned from a developmental technology to one that is flight ready. The LHP is considered to be more robust than capillary pumped loops (CPL) because the LHP does not require any preconditioning of the system prior to application of the heat load, nor does its performance become unstable in the presence of two-phase fluid in the core of the evaporator. However, both devices have a lower limit on input power: below a certain power, the system may not start properly. The LHP becomes especially susceptible to these low power start-ups following diode operation, intentional shut-down, or very cold conditions. These limits are affected by the presence of adverse tilt, mass on the evaporator, and noncondensible gas in the working fluid.
Technical Paper

Metric Evaluation of Food Packaging Scenarios Intended for a Mars Surface Mission

2006-07-17
2006-01-2067
The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. For these missions several food provisioning strategies are being investigated. Individual, prepackaged meals may be provided throughout the mission or commodities may be taken in bulk and processed while on the planetary surface. To enable these different supply scenarios, a packaging system must be developed that will protect the food or commodity and have minimal impact on system mass. Metric values for a prepackaged scenario and a bulk supply scenario, using current packaging material technologies, were compared. The results of this comparison show that bulk packaging penalties will potentially be more than an order of magnitude less than those of a prepackaged food system.
Technical Paper

Mark III Space Suit Mobility: A Reach Evaluation Case Study

2007-06-12
2007-01-2473
A preliminary assessment of the reach envelope and field of vision (FOV) for a subject wearing a Mark III space suit was requested for use in human-machine interface design of the Science Crew Operations and Utility Testbed (SCOUT) vehicle. The reach and view of two suited and unsuited subjects were evaluated while seated in the vehicle using 3-dimensional position data collected during a series of reaching motions. Data was interpolated and displayed in orthogonal views and cross-sections. Compared with unsuited conditions, medio-lateral reach was not strongly affected by the Mark III suit, whereas vertical and antero-posterior reach were inhibited by the suit. Lateral FOV was reduced by approximately 40° in the suit. The techniques used in this case study may prove useful in human-machine interface design by providing a new means of developing and displaying reach envelopes.
Technical Paper

Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

2000-07-10
2000-01-2247
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories.
Journal Article

High Temperature Sodium Bismuth Titanate Capacitors – A New Product Realized

2008-11-11
2008-01-2863
This paper describes the development of a lead free, high temperature ceramic capacitor material having the base composition of (Na0.5 Bi0.5) TiO3. The goal is to modify this structure to create a material that has the relative permittivity of barium titanate with extended X7R-like properties to 250°C - an X14R. After an extensive compositional and theoretical modeling investigation a composition was selected and capacitors developed. The dielectric has a 1-kHz relative permittivity of ∼1200 with <±15% variation from -25 to +250°C and <5% loss from -55 to +250°C. These capacitors also have very low voltage coefficients, indeed they are positive at the low end of the temperature range, resulting in a combined TC-Vc capacitance variation 0%/-25% of nominal from -55 to +200°C with applied voltage stress from 20 to 260 V/mil.
Technical Paper

Guidance for Trade Studies of Flight-Equivalent Hardware

2007-07-09
2007-01-3223
Spacecraft hardware trade studies compare options primarily on mass while considering impacts to cost, risk, and schedule. Historically, other factors have been considered in these studies, such as reliability, technology readiness level (TRL), volume and crew time. In most cases, past trades compared two or more technologies across functional and TRL boundaries, which is an uneven comparison of the technologies. For example, low TRL technologies with low mass were traded directly against flight-proven hardware without consideration for requirements and the derived architecture. To provide for even comparisons of spacecraft hardware, trades need to consider functionality, mission constraints, integer vs. real number of flight hardware units, and mass growth allowances by TRL.
Technical Paper

Evaluation of a Full-Body Scanning Technique for the Purpose of Extracting Anthropometrical Measurements

2005-07-11
2005-01-3016
A method for capturing full-body scans for the purpose of extracting Extravehicular Activity (EVA) suit measurements is being evaluated. Subjects were marked using reflective spheres enabling researchers to acquire all 118 measurements of the suit sizing protocol. Several researchers measured the subjects using a full-body laser scanner, a motion analysis system, and standard anthropometrical equipment. The linear scanner measurements were compared to the motion analysis data, while the circumferential scanner measurements were compared to the manual data. The mean percent difference between the scanner measurements and motion analysis linear/manual circumferential measurements was 4.21%. It was concluded that the scanner measurements were accurate enough for preliminary sizing of EVA suits.
X