Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Pneumatic Hybrid Technology to Reduce Fuel Consumption and Eliminate Turbo-Lag

2013-04-08
2013-01-1452
For the vehicles with frequent stop-start operations, fuel consumption can be reduced significantly by implementing stop-start operation. As one way to realize this goal, the pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into air tanks installed on the vehicle. The compressed air can then be reused to drive an air starter to realize a regenerative stop-start function. Furthermore, the pneumatic hybrid can eliminate turbo-lag by injecting compressed air into manifold and a correspondingly larger amount of fuel into the cylinder to build-up full-load torque almost immediately. This paper takes the pneumatic hybrid engine as the research object, focusing on evaluating the improvement of fuel economy of multiple air tanks in different test cycles. Also theoretical analysis the benefits of extra boost on reducing turbo-lag to achieve better performance.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Towards an Open Source Model for Engine Control Systems

2008-06-23
2008-01-1711
Traditionally, university research in engine technology has been focused on fundamental engine phenomena. Increasingly however, research topics are developing in the form of systems issues. Examples include air and exhaust gas recirculation (EGR) management, after-treatment systems, engine cooling, hybrid systems and energy recovery. This trend leads to the need for engine research to be conducted using currently available products and components that are re-configured or incrementally improved to support a particular research investigation. A production engine will include an electronic control unit (ECU) that must be understood and utilised or simply removed and circumvented. In general the intellectual property (IP) limitations places on ECUs by their suppliers mean that they cannot be used. The supplier of the ECU is usually unable to reveal any detail of the implementation. As a consequence any research using production hardware is seriously disadvantaged from the beginning.
Technical Paper

Towards In-Cylinder Flow Informed Engine Control Strategies Using Linear Stochastic Estimation

2019-04-02
2019-01-0717
Many modern I.C. engines rely on some form of active control of injection, timing and/or ignition timing to help combat tailpipe out emissions, increase the fuel economy and improve engine drivability. However, development of these strategies is often optimised to suit the average cycle at each condition; an assumption that can lead to sub-optimal performance, especially an increase in particulate (PN) emissions as I.C. engine operation, and in-particular its charge motion is subject to cycle-to-cycle variation (CCV). Literature shows that the locations of otherwise repeatable large-scale flow structures may vary by as much 25% of the bore dimension; this could have an impact on fuel break-up and distribution and therefore subsequent combustion performance and emissions.
Technical Paper

The Potential of Fuel Metering Control for Optimising Unburned Hydrocarbon Emissions in Diesel Low Temperature Combustion

2013-04-08
2013-01-0894
Low temperature combustion (LTC) in diesel engines offers attractive benefits through simultaneous reduction of nitrogen oxides and soot. However, it is known that the in-cylinder conditions typical of LTC operation tend to produce high emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO), reducing combustion efficiency. The present study develops from the hypothesis that this characteristic poor combustion efficiency is due to in-cylinder mixture preparation strategies that are non-optimally matched to the requirements of the LTC combustion mode. In this work, the effects of three key fuel path parameters - injection fuel quantity ratio, dwell and injection timing - on CO and HC emissions were examined using a Central Composite Design (CCD) Design of Experiments (DOE) method.
Technical Paper

The Measurement of Liner - Piston Skirt Oil Film Thickness by an Ultrasonic Means

2006-04-03
2006-01-0648
The paper presents a novel method for the measurement of lubricant film thickness in the piston-liner contact. Direct measurement of the film in this conjunction has always posed a problem, particularly under fired conditions. The principle is based on capturing and analysing the reflection of an ultrasonic pulse at the oil film. The proportion of the wave amplitude reflected can be related to the thickness of the oil film. A single cylinder 4-stroke engine on a dyno test platform was used for evaluation of the method. A piezo-electric transducer was bonded to the outside of the cylinder liner and used to emit high frequency short duration ultrasonic pulses. These pulses were used to determine the oil film thickness as the piston skirt passed over the sensor location. Oil films in the range 2 to 21 μm were recorded varying with engine speeds. The results have been shown to be in agreement with detailed numerical predictions.
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

The Effect of EGR on Diesel Engine Wear

1999-03-01
1999-01-0839
As part of an ongoing programme of Exhaust Gas Recirculation (EGR) wear investigations, this paper reports a study into the effect of Exhaust Gas Recirculation, and a variety of interacting factors, on the wear rate of the top piston ring and the liner top ring reversal point on a 1.0 litre/cylinder medium duty four cylinder diesel engine. Thin Layer Activation (TLA - also known as Surface Layer Activation in the US) has been used to provide individual wear rates for these components when engine operating conditions have been varied. The effects of oil condition, EGR level, fuel sulphur content and engine coolant temperature have been investigated at one engine speed at full load. The effects of engine load and uncooled EGR have also been assessed. The effects of these parameters on engine wear are presented and discussed. When EGR was applied a significant increase in wear was observed at EGR levels of between 10% and 15%.
Technical Paper

The Effect of Cylinder De-Activation on Thermo-Friction Characteristics of the Connecting Rod Bearing in the New European Drive Cycle (NEDC)

2014-06-30
2014-01-2089
This paper presents an investigation of Cylinder De-Activation (CDA) technology on the performance of big end bearings. A multi-physics approach is used in order to take into account more realistic dynamic loading effects on the tribological behavior. The power loss, minimum film thickness and maximum temperature of big end bearings have been calculated during maneuver pertaining to the New European Driving Cycle (NEDC). Results show that bearing efficiency runs contrary to efficiency gained through combustion and pumping losses. Under CDA mode, the power loss of big end bearings is more than the power loss under engine normal mode. The problem is predominant at higher engine speeds and higher Brake mean Effective Pressures (BMEP) in active cylinders. It is also observed that the minimum film thickness is reduced under the CDA mode. This can affect wear performance. In addition, same behavior is noted for the maximum temperature rise which is higher under CDA.
Technical Paper

The Characterisation of a Centrifugal Separator for Engine Cooling Systems

2015-04-14
2015-01-1693
It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
Technical Paper

Optimization of the Number of Thermoelectric Modules in a Thermoelectric Generator for a Specific Engine Drive Cycle

2016-04-05
2016-01-0232
Two identical commercial Thermo-Electric Modules (TEMs) were assembled on a plate type heat exchanger to form a Thermoelectric Generator (TEG) unit in this study. This unit was tested on the Exhaust Gas Recirculation (EGR) flow path of a test engine. The data collected from the test was used to develop and validate a steady state, zero dimensional numerical model of the TEG. Using this model and the EGR path flow conditions from a 30% torque Non-Road Transient Cycle (NRTC) engine test, an optimization of the number of TEM units in this TEG device was conducted. The reduction in fuel consumption during the transient test cycle was estimated based on the engine instantaneous Brake Specific Fuel Consumption (BSFC). The perfect conversion of TEG recovered electrical energy to engine shaft mechanical energy was assumed. Simulations were performed for a single TEG unit (i.e. 2 TEMs) to up to 50 TEG units (i.e. 100 TEMs).
Technical Paper

Optical Diagnostics and CFD Validation of Jacket Cooling System Filling and the Occurrence of Trapped Air

2012-04-16
2012-01-1213
This paper reports the findings from an experimental investigation of the engine cooling jacket filling process for a medium duty off-highway diesel engine to characterise the physical processes that lead to the occurrence of trapped air. The motivation for the project was to provide knowledge and data to aid the development of a computational design tool capable of predicting the amount and location of trapped air in a cooling circuit following a fill event. To quantify the coolant filling process, a transparent replica of a section of the cylinder head cooling core was manufactured from acrylic to allow the application of optical diagnostic techniques. Experimentation has characterised the coolant filling process through the use of three optical techniques. These include the two established methods of High-Speed Imaging and Particle Image Velocimetry (PIV), as well as a novel approach developed for tracking the liquid-air interface during the fill event.
Technical Paper

Non-Thermal Particulate Filter Regeneration Using Rapid Pulse Electric Discharges

2013-04-08
2013-01-0518
This research introduces a new, novel approach to reverse flow particulate filter regeneration enabled by rapidly pulsed electric discharges. The discharges physically dislodge particulate matter (PM) from the filter substrate and allow a very low reverse air flow to transport it to a soot handling system. The system is operable independent of filter temperature, does not expose the filter to high thermal stresses or temperatures, has no apparent upper limit for filter PM-mass level (regeneration of a filter up to 17 g/L has been demonstrated), and does not require any catalyst. The system is inherently scalable allowing application to monolithic filters of any size or shape and can be tailored to suit specific application requirements such as limits on maximum regeneration time or power consumption. For example a light duty application would require as little as 200-500W electrical power to regenerate a filter in less than ten minutes (i.e. passenger car GPF or DPF).
Technical Paper

Multi-Zone Kinetic Model of Controlled Auto Ignition Combustion

2009-04-20
2009-01-0673
A multi-zone Controlled Auto Ignition (CAI) model for simulating the combustion and emissions has been developed and reported in this paper. The model takes into account the effects of the boundary layer, crevice volume, and blowby. In order to investigate the influences of in-cylinder inhomogeneity, the main cylinder chamber has been divided into multiple core zones with varying temperature and composition. Mass and energy transfer between neighbouring zones were modeled. A reduced chemical kinetic mechanism was implemented in each zone to simulate the CAI combustion chemistry and emission formation. An in-house code, the LUCKS (Loughborough University Chemical Kinetics Simulation), was employed to solve the coupled differential equations of the system. The model was validated against experimental results at various Internal Exhaust Gas Recirculation (IEGR) levels and was then used to analyze the thermal and chemical effect of the IEGR on the CAI combustion.
Journal Article

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics

2018-04-03
2018-01-0705
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach.
Technical Paper

Mode Transition Optimisation for Variable Displacement Engines

2016-04-05
2016-01-0619
The deactivation of one or more cylinders in internal combustion engines has long been established in literature as a means of reducing engine pumping losses and thereby improving brake specific fuel consumption. As down-sizing and down-speeding of modern engines becomes more extreme, drivability issues associated with mode transition become more acute and need to be managed within a suitable calibration framework. This paper presents methodology by which a calibration may be deduced for optimal mode-transitioning in respect of minimising the torque disturbance as cylinders are deactivated and re-activated. At the outset of this study a physics based engine model is used to investigate the key parameters that influence the transition. Having understood these, experiments are designed to establish the level of mode transition disturbance using quantitative statistical indicators such that the cost function may be defined and an optimisation undertaken.
Technical Paper

Measurement of Air Flow Around an Inlet Valve Using a Pitot Probe

1998-02-23
980142
This paper describes a detailed study into the use of a pitot probe to measure air flow around an inlet valve under steady state conditions. The study was undertaken to assess the feasibility of the method for locating areas of a port and valve which may be contributing to a poor overall discharge coefficient. This method would provide a simple and cheap experimental tool for use throughout the industry. The method involves mounting a miniature internal chamfer pitot tube on a slider attached to the base of the valve. The probe can traverse the appropriate area by rotating the valve and moving it along the slide. Changing the probe allows measurements in different planes, allowing the whole region around the valve to be surveyed. The cylinder head complete with instrumentation is mounted on a steady flow rig. The paper presents the results obtained at different valve lifts on a production cylinder head.
Technical Paper

Managing Loads on Aircraft Generators to Prevent Overheat In-Flight

2014-09-16
2014-01-2195
On future UAVs it is envisaged that the power requirements of all on-board electrical systems will increase. In most flight (mission) situations the installed power generation will have adequate capacity to operate the aircraft. It is possible that during abnormal situations such as coolant blockage the generators on-board may be forced to operate under very high load conditions. The main failure mechanism for a generator is overheating and subsequent disintegration of windings, hence the research problem being addressed here is to manage the loads upon the generator to prevent overheats. The research presented here summarizes the modeling of the generator and formation of the load management system. Results are presented showing the system reallocating loads after a fault during flight, preventing overheat of the generators and successfully completing the mission.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

In-Cylinder Flow Structure Analysis by Particle Image Velocimetry Under Steady State Condition

2012-09-24
2012-01-1975
This paper deals with experimental investigations of the in-cylinder flow structures under steady state conditions utilizing Particle Image Velocimetry (PIV). The experiments have been conducted on an engine head of a pent-roof type (Lotus) for a number of fixed valve lifts and different inlet valve configurations at two pressure drops, 250mm and 635mm of H2O that correlate with engine speeds of 2500 and 4000 RPM respectively. From the two-dimensional in-cylinder flow measurements, a tumble flow analysis is carried out for six planes parallel to the cylinder axis. In addition, a swirl flow analysis is carried out for one horizontal plane perpendicular to the cylinder axis at half bore downstream from the cylinder head (44mm). The results show the advantage of using the planar technique (PIV) for investigating the complete flow structures developed inside the cylinder.
X