Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation of HCCI – Addressing Compression Ratio and Turbo Charging

This paper focuses on the performance and efficiency of an HCCI (Homogenous Charge Compression Ignition) engine system running on natural gas or landfill gas for stationary applications. Zero dimensional modeling and simulation of the engine, turbo, inlet and exhaust manifolds and inlet air conditioner (intercooler/heater) are used to study the effect of compression ratio and exhaust turbine size on maximum mean effective pressure and efficiency. The extended Zeldovich mechanism is used to estimate NO-formation in order to determine operation limits. Detailed chemical kinetics is used to predict ignition timing. Simulation of the in-cylinder process gives a minimum λ-value of 2.4 for natural gas, regardless of compression ratio. This is restricted by the NO formation for richer mixtures. Lower compression ratios allow higher inlet pressure and hence higher load, but it also reduces indicated efficiency.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.