Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Simultaneous Control of Combustion Timing and Ignition Delay in Multi-Cylinder Partially Premixed Combustion

2015-09-06
2015-24-2424
In low-temperature combustion concepts such as partially premixed combustion, the ignition delay should be large enough in order to ensure sufficient fuel and air mixing before the start of combustion. It is also necessary that the combustion timing is sufficiently well phased for high thermal efficiency. Since the ignition delay and combustion timing are intimately coupled, the decoupling of these two quantities gives rise to an interesting multiple input, multiple output control problem where the control of the air system and the fuel injection system have to be combined. In a multi-cylinder engine this problem becomes underdetermined or uncontrollable with more outputs than inputs. This article investigates model-based cycle-to-cycle cylinder-individual closed-loop control of the ignition delay and the combustion phasing in a multi-cylinder heavy-duty DI engine running on a gasoline fuel mixture.
Technical Paper

Sensitivity Analysis of Partially Premixed Combustion (PPC) for Control Purposes

2015-04-14
2015-01-0884
Partially Premixed Combustion (PPC) is a promising advanced combustion mode for future engines. In order to investigate the sensitivity of PPC to exhaust gas recirculation (EGR) rate, intake gas temperature, intake gas pressure, and injection timing, these parameters were swept individually at three different loads in a single cylinder diesel engine with gasoline-like fuel. A factor of sensitivity was defined to indicate the combustion's controllability and sensitivity to inlet gas parameters and injection timings. Through analysis of experimental results, a control window of inlet gas parameters and injection timings is obtained at different loads in PPC mode from 5 bar to 10 bar IMEPg load at 1200 rpm. To further study the PPC controllability with injection timing, main injection timing was adjusted to sustain steady combustion phasing subject to perturbation of inlet gas state.
Book

Nonlinear and Hybrid Systems in Automotive Control

2003-05-01
A new generation of strategies for vehicle and engine control systems has become necessary because of increasing requirements for accuracy, ride, comfort, safety, complexity, and emission levels. In contrast with earlier systems, new control systems are based on dynamic physical models and the principles of advanced nonlinear control. With contributions from leading scientists in the field, this book presents an overview of research in this rapidly-expanding area. New approaches to solving theoretical problems, as well as numerous systems and control research issues, are covered.
Technical Paper

Learning Based Model Predictive Control of Combustion Timing in Multi-Cylinder Partially Premixed Combustion Engine

2019-09-09
2019-24-0016
Partially Premixed Combustion (PPC) has shown to be a promising advanced combustion mode for future engines in terms of efficiency and emission levels. The combustion timing should be suitably phased to realize high efficiency. However, a simple constant model based predictive controller is not sufficient for controlling the combustion during transient operation. This article proposed one learning based model predictive control (LBMPC) approach to achieve controllability and feasibility. A learning model was developed to capture combustion variation. Since PPC engines could have unacceptably high pressure-rise rates at different operation points, triple injection is applied as a solvent, with the use of two pilot fuel injections. The LBMPC controller utilizes the main injection timing to manage the combustion timing. The cylinder pressure is used as the combustion feedback. The method is validated in a multi-cylinder heavy-duty PPC engine for transient control.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Technical Paper

Control-Oriented Modeling of Soot Emissions in Gasoline Partially Premixed Combustion with Pilot Injection

2017-03-28
2017-01-0511
In this paper, a control-oriented soot model was developed for real-time soot prediction and combustion condition optimization in a gasoline Partially Premixed Combustion (PPC) Engine. PPC is a promising combustion concept that achieves high efficiency, low soot and NOx emissions simultaneously. However, soot emissions were found to be significantly increased with high EGR and pilot injection, therefore a predictive soot model is needed for PPC engine control. The sensitivity of soot emissions to injection events and late-cycle heat release was investigated on a multi-cylinder heavy duty gasoline PPC engine, which indicated main impact factors during soot formation and oxidation processes. The Hiroyasu empirical model was modified according to the sensitivity results, which indicated main influences during soot formation and oxidation processes. By introducing additional compensation factors, this model can be used to predict soot emissions under pilot injection.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Journal Article

A Model-Based Injection-Timing Strategy for Combustion-Timing Control

2015-04-14
2015-01-0870
The combustion timing in internal combustion engines affects the fuel consumption, in-cylinder peak pressure, engine noise and emission levels. The combination of an in-cylinder pressure sensor together with a direct injection fuel system lends itself well for cycle-to-cycle control of the combustion timing. This paper presents a method of controlling the combustion timing by the use of a cycle-to-cycle injection-timing algorithm. At each cycle the currently estimated heat-release rate is used to predict the in-cylinder pressure change due to a combustion-timing shift. The prediction is then used to obtain a cycle-to-cycle model that relates combustion timing to gross indicated mean effective pressure, max pressure and max pressure derivative. Then the injection timing that controls the combustion timing is decided by solving an optimization problem involving the model obtained.
Technical Paper

A Machine Learning Approach to Information Extraction from Cylinder Pressure Sensors

2012-04-16
2012-01-0440
As the number of actuators and sensors increases in modern combustion engines, the task of optimizing engine performance becomes increasingly complex. Efficient information processing techniques are therefore important, both for off-line calibration of engine maps, and on-line adjustments based on sensor data. In-cylinder pressure sensors are slowly spreading from laboratory use to production engines, thus making data with high temporal resolution of the combustion process available. The standard way of using the cylinder pressure data for control and diagnostics is to focus on a few important physical features extracted from the pressure trace, such as the combustion phasing CA50, the indicated mean effective pressure IMEP, and the ignition delay. These features give important information on the combustion process, but much information is lost as the information from the high-resolution pressure trace is condensed into a few key parameters.
X