Refine Your Search

Topic

Author

Search Results

Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Journal Article

Simultaneous PLIF Imaging of OH and PLII Imaging of Soot for Studying the Late-Cycle Soot Oxidation in an Optical Heavy-Duty Diesel Engine

2016-04-05
2016-01-0723
The effects of injection pressure and swirl ratio on the in-cylinder soot oxidation are studied using simultaneous PLIF imaging of OH and LII imaging of soot in an optical diesel engine. Images are acquired after the end of injection in the recirculation zone between two adjacent diesel jets. Scalars are extracted from the images and compared with trends in engine-out soot emissions. The soot emissions decrease monotonically with increasing injection pressure but show a non-linear dependence on swirl ratio. The total amount of OH in the images is negatively correlated with the soot emissions, as is the spatial proximity between the OH and soot regions. This indicates that OH is an important soot oxidizer and that it needs to be located close to the soot to perform this function. The total amount of soot in the images shows no apparent correlation with the soot emissions, indicating that the amount of soot formed is a poor predictor of the emission trends.
Technical Paper

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber

2005-09-11
2005-24-008
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
White Paper

PROACTIVE METHODS FOR ROAD SAFETY ANALYSIS

2017-10-12
WP-0005
To date, the universal metric for road safety has been historical crash data, specifically, crash frequency and severity, which are direct measures of safety. However, there are well-recognized shortcomings of the crash-based approach; its greatest drawback being that it is reactive and requires long observational periods. Surrogate measures of safety, which encompass measures of safety that do not rely on crash data, have been proposed as a proactive approach to road safety analysis. This white paper provides an overview of the concept and evolution of surrogate measures of safety, as well as the emerging and future methods and measures. This is followed by the identification of the standards needs in this discipline as well as the scope of SAE’s Surrogate Measures of Safety Committee.
Technical Paper

Numerical Simulation of the ECN Spray A Using Multidimensional Chemistry Coordinate Mapping: n-Dodecane Diesel Combustion

2012-09-10
2012-01-1660
A three dimensional numerical simulation of the ECN “Spray A” is presented. Both primary and secondary breakup of the spray are included. The fuel is n-Dodecane. The n-Dodecane kinetic mechanism is modeled using a skeletal mechanism that consists of 103 species and 370 reactions [9]. The kinetic mechanism is computationally heavy when coupled with three dimensional numerical simulations. Multidimensional chemistry coordinate mapping (CCM) approach is used to speedup the simulation. CCM involves two-way mapping between CFD cells and a discretized multidimensional thermodynamic space, the so called multidimensional chemistry coordinate space. In the text, the cells in the discretized multidimensional thermodynamic space are called zone to discriminate them from the CFD cells. In this way, the CFD cells which are at the similar thermodynamic state are identified and grouped into a unique zone. The stiff ODEs operates only on the zones containing at least one CFD cell.
Book

Nonlinear and Hybrid Systems in Automotive Control

2003-05-01
A new generation of strategies for vehicle and engine control systems has become necessary because of increasing requirements for accuracy, ride, comfort, safety, complexity, and emission levels. In contrast with earlier systems, new control systems are based on dynamic physical models and the principles of advanced nonlinear control. With contributions from leading scientists in the field, this book presents an overview of research in this rapidly-expanding area. New approaches to solving theoretical problems, as well as numerous systems and control research issues, are covered.
Technical Paper

Mechanisms of Post-Injection Soot-Reduction Revealed by Visible and Diffused Back-Illumination Soot Extinction Imaging

2018-04-03
2018-01-0232
Small closely-coupled post injections of fuel in diesel engines are known to reduce engine-out soot emissions, but the relative roles of various underlying in-cylinder mechanisms have not been established. Furthermore, the efficacy of soot reduction is not universal, and depends in unclear ways on operating conditions and injection schedule, among other factors. Consequently, designing engine hardware and operating strategies to fully realize the potential of post-injections is limited by this lack of understanding. Following previous work, several different post-injection schedules are investigated using a single-cylinder 2.34 L heavy-duty optical engine equipped with a Delphi DFI 1.5 light-duty injector. In this configuration, adding a closely-coupled post injection with sufficiently short injection duration can increase the load without increasing soot emissions.
Technical Paper

Lift-Off Lengths in an Optical Heavy-Duty Engine Operated at High Load with Low and High Octane Number Fuels

2018-04-03
2018-01-0245
The influence of the ignition quality of diesel-and gasoline-like fuels on the lift-off length of the jet were investigated in an optical heavy duty engine. The engine was operated at a load of 22 bar IMEPg and 1200 rpm. A production type injector with standard holes were used. The lift-off length was recorded with high speed video Different injection pressures and inlet temperatures were used to affect conditions that consequently affect the lift-off length. No matter which fuel used nor injection pressure or inlet temperature, all lift-off lengths showed equal or close to equal lift-off length when stabilized. The higher octane fuel had a longer ignition delay and therefore the fuel penetrate the combustion chamber before auto ignition. This gave a longer lift-off length at the initial stage of combustion before reaching the same stabilized lift-off length. These results indicate that the hot combustion gases are a dominant factor to the lift-off length.
Technical Paper

Investigation of Combustion Characteristics of a Fuel Blend Consisting of Methanol and Ignition Improver, Compared to Diesel Fuel and Pure Methanol

2024-04-09
2024-01-2122
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Technical Paper

Impact of Multiple Injection Strategies on Efficiency and Combustion Characteristics in an Optical PPC Engine

2020-04-14
2020-01-1131
Partially premixed combustion (PPC) is a promising way to achieve high thermal efficiency and low emissions, especially by using multiple injection strategies. The mechanisms behind PPC efficiency are still to be explained and explored. In this paper, multiple injections have been used to affect the gross indicated efficiency in an optical PPC engine modified from a Volvo MD13 heavy-duty diesel engine. The aim is both to improve and impair the gross indicated efficiency to understand the differences. The combustion natural luminosity is captured by a high-speed camera, and the distribution of fuel, oxygen, and temperature during the combustion process has been further explored by CFD simulation. The results show that with the right combination of the pilot, main, and post injection the gross indicated efficiency can be improved.
Technical Paper

Genetic Algorithm for Dynamic Calibration of Engine's Actuators

2007-04-16
2007-01-1079
Modern diesel engines are equipped with an increasing number of actuators set to improve human comfort and fuel consumptions while respecting the restricted emissions regulations. In spite of the great progress made in the electronic and data-processing domains, the physical-based emissions models remain time consuming and too complicated to be used in a dynamic calibrating process. Therefore, until these days, the calibration of the engine's cartographies is done manually by experimental experts on dynamic test bed, but the results are not often the best compromise in the consumption-emissions formula due to the increasing number of actuators and to the nonlinear and complex relations between the different variables involved in the combustion process. Recently, neural networks are successfully used to model dynamic multiple inputs - multiple outputs processes by learning from examples and without any additional or detailed information about the process itself.
Technical Paper

Force Feedback for Assembly of Aircraft Structures

2010-09-28
2010-01-1872
Variability in composite manufacture and the limitations in positional accuracy of common industrial robots have hampered automation of assembly tasks within aircraft manufacturing. One way to handle geometry variations and robot compliancy is to use force control. Force control technology utilizes a sensor mounted on the robot to feedback force data to the controller system so instead of being position driven, i.e. programmed to achieve a certain position with the tool, the robot can be programmed to achieve a certain force. This paper presents an experimental case where a compliant rib is aligned to multiple surfaces using force feedback and an industrial robot system from ABB. Two types of ribs where used, one full size carbon fiber rib, and one smaller metal replica for evaluation purposes. The alignment sequence consisted of several iterative steps and a search procedure was implemented within the robot control system.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

FPGA Implementation of In-Cycle Closed-Loop Combustion Control Methods

2021-09-05
2021-24-0024
This paper investigates the FPGA resources for the implementation of in-cycle closed-loop combustion control algorithms. Closed-loop combustion control obtains feedback from fast in-cylinder pressure measurements for accurate and reliable information about the combustion progress, synchronized with the flywheel encoder. In-cycle combustion control requires accurate and fast computations for their real-time execution. A compromise between accuracy and computation complexity must be selected for an effective combustion control. The requirements on the signal processing (evaluation rate and digital resolution) are investigated. A common practice for the combustion supervision is to monitor the heat release rate. For its calculation, different methods for the computation of the cylinder volume and heat capacity ratio are compared. Combustion feedback requires of virtual sensors for the misfire detection, burnt fuel mass and pressure prediction.
Technical Paper

Experimental Investigation of Pilot Injection Strategies to Aid Low Load Compression Ignition of Neat Methanol

2024-04-09
2024-01-2119
The growing demand to lower greenhouse gas emissions and transition from fossil fuels, has put methanol in the spotlight. Methanol can be produced from renewable sources and has the property of burning almost soot-free in compression ignition (CI) engines. Consequently, there has been a notable increase in research and development activities directed towards exploring methanol as a viable substitute for diesel fuel in CI engines. The challenge with methanol lies in the fact that it is difficult to ignite through compression alone, particularly in low-load and cold start conditions. This difficulty arises from methanol's high octane number, relatively low heating value, and high heat of vaporization, collectively demanding a considerable amount of heat for methanol to ignite through compression. Previous studies have addressed the use of a pilot injection in conjunction with a larger main injection to lower the required intake air temperature for methanol to combust at low loads.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
X