Refine Your Search

Topic

Search Results

Technical Paper

Understanding the Challenges Associated with Soot-in-Oil from Diesel Engines: A Review Paper

2021-04-06
2021-01-0568
The major drivers in the development of the latest generation of engines are environmental. For diesel engines, mitigating the effects of soot contamination remains a significant factor in meeting these challenges. There is general consensus of soot impacting oil performance. Considerable efforts have been made towards a greater understanding of soot-lubricant interaction and its effects on engine performance. However, with evolution of engine designs resulting in changes to soot composition/ properties, the mechanisms of soot-lubricant interaction in the internal combustion engine continue to evolve. A variety of mechanisms have been proposed to explain soot-induced wear in engine components. Furthermore, wear is not the only topic among researchers. Studies have shown that soot contributes to oil degradation by increasing its viscosity leading to pumpability and lubricant breakdown issues.
Technical Paper

The Influence of Ignition Control Parameters on Combustion Stability and Spark plug Wear in a Large Bore Gas Engine

2023-04-11
2023-01-0257
The paper presents novel studies on the impact of different ignition control parameters on combustion stability and spark plug wear. First, experimental results from a 32.4-liter biogas fueled large bore single cylinder spark ignition engine are discussed. Two different ignition systems were considered in the experiment: a DC inductive and an AC capacitive. The spark plugs used in the experiment were of dual-iridium standard J-gap design of different electrode gaps. Test results show the importance of different degrees of freedom to control a spark. A robust ignition is found to be achieved by using a very short spark duration, which in turn reduces total energy discharge at the gap. Further observations reveal that once a stable and self-propagating flame kernel is developed, it becomes independent of the spark energy further added to the gap. Finally, results from the spark plug wear tests using a pressurized rig chamber are discussed.
Technical Paper

Scalability Aspects of Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2016-04-05
2016-01-0796
This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented.
Technical Paper

Reducing the Cycle-Cycle Variability of a Natural Gas Engine Using Controlled Ignition Current

2013-04-08
2013-01-0862
Running an internal combustion engine with diluted methane/air mixtures has a potential of reducing emissions and increasing efficiency. However, diluted mixtures need high ignition energy in a sufficiently large volume, which is difficult to accomplish. Increasing the spark duration has shown to be a promising way of delivering more energy into the diluted charge, but this requires a more sophisticated ignition system. This work focuses on evaluating the effects regarding enhancing early flame development, reducing cyclic variations and extending the lean limit using a new capacitive ignition system as compared to a conventional inductive ignition system. The new system offers the opportunity to customise the spark by altering the electric pulse train characteristics choosing the number of pulses, the length of the individual pulses as well as the time delay between them.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
White Paper

PROACTIVE METHODS FOR ROAD SAFETY ANALYSIS

2017-10-12
WP-0005
To date, the universal metric for road safety has been historical crash data, specifically, crash frequency and severity, which are direct measures of safety. However, there are well-recognized shortcomings of the crash-based approach; its greatest drawback being that it is reactive and requires long observational periods. Surrogate measures of safety, which encompass measures of safety that do not rely on crash data, have been proposed as a proactive approach to road safety analysis. This white paper provides an overview of the concept and evolution of surrogate measures of safety, as well as the emerging and future methods and measures. This is followed by the identification of the standards needs in this discipline as well as the scope of SAE’s Surrogate Measures of Safety Committee.
Journal Article

Optical Characterization of the Combustion Process inside a Large-Bore Dual-Fuel Two-Stroke Marine Engine by Using Multiple High-Speed Cameras

2020-04-14
2020-01-0788
Dual-fuel engines for marine propulsion are gaining in importance due to operational and environmental benefits. Here the combustion in a dual-fuel marine engine operating on diesel and natural gas, is studied using a multiple high-speed camera arrangement. By recording the natural flame emission from three different directions the flame position inside the engine cylinder can be spatially mapped and tracked in time. Through space carving a rough estimate of the three-dimensional (3D) flame contour can be obtained. From this contour, properties like flame length and height, as well as ignition locations can be extracted. The multi-camera imaging is applied to a dual-fuel marine two-stroke engine, with a bore diameter of 0.5 m and a stroke of 2.2 m. Both liquid and gaseous fuels are directly injected at high pressure, using separate injection systems. Optical access is obtained using borescope inserts, resulting in a minimum disturbance to the cylinder geometry.
Technical Paper

Investigation of Truck Tire Rubber Material Definitions Using Finite Element Analysis

2024-04-09
2024-01-2648
This paper investigates the tire-road interaction for tires equipped with two different solid rubber material definitions within a Finite Element Analysis virtual environment, ESI PAMCRASH. A Mixed Service Drive truck tire sized 315/80R22.5 is designed with two different solid rubber material definitions: a legacy hyperelastic solid Mooney-Rivlin material definition and an Ogden hyperelastic solid material definition. The popular Mooney-Rivlin is a material definition for solid rubber simulation that is not built with element elimination and is not easily applicable to thermal applications. The Ogden hyperelastic material definition for rubber simulations allows for element destruction. Therefore, it is of interest and more suited for designing a tire model with wear and thermal capabilities.
Journal Article

Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR

2012-09-24
2012-01-1980
This article deals with application of turbulent jet ignition technique to heavy duty multi-cylinder natural gas engine for mobile application. Pre-chamber spark plugs are identified as a promising means of achieving turbulent jet ignition as they require minimal engine modification with respect to component packaging in cylinder head and the ignition system. Detailed experiments were performed with a 6 cylinder 9.4 liter turbo-charged engine equipped with multi-point gas injection system to compare performance and emissions characteristics of operation with pre-chamber and conventional spark plug. The results indicate that ignition capability is significantly enhanced as flame development angle and combustion duration are reduced by upto 30 % compared to those with conventional spark plugs at certain operating points.
Technical Paper

Heavy Duty Emission Control System Analysis and Optimization for Future Demands

2015-04-14
2015-01-0997
This paper will review several different emission control systems for heavy duty diesel (HDD) applications aimed at future legislations. The focus will be on the (DOC+CSF+SCR+ASC) configuration. As of today, various SCR technologies are used on commercial vehicles around the globe. Moving beyond EuroVI/US10 emission levels, both fuel consumption savings and higher catalyst system efficiency are required. Therefore, significant system optimization has to be considered. Examples of this include: catalyst development, optimized thermal management, advanced urea dosing calibrations, and optimized SCR inlet NO:NO2 ratios. The aim of this paper is to provide a thorough system screening using a range of advanced SCR technologies, where the pros and cons from a system perspective will be discussed. Further optimization of selected systems will also be reviewed. The results suggest that current legislation requirements can be met for all SCR catalysts under investigation.
Technical Paper

HCCI Gas Engine: Evaluation of Engine Performance, Efficiency and Emissions - Comparing Producer Gas and Natural Gas

2011-04-12
2011-01-1196
The Technical University of Denmark, DTU, has constructed, built and tested a gasifier [1, 11] that is fueled with wood chips and achieves a 93% conversion efficiency from wood to producer gas. By combining the gasifier with an internal combustion engine and a generator, a co-generative system can be realized that produces electricity and heat. The gasifier uses the waste heat from the engine for drying and pyrolysis of the wood chips while the produced gas is used to fuel the engine. To achieve high efficiency in converting biomass to electricity it necessitates an engine that is adapted to high efficiency operation using the specific producer gas from the DTU gasifier. So far the majority of gas engines of today are designed and optimized for SI-operation on natural gas.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Journal Article

Experimental Investigation on CNG-Diesel Combustion Modes under Highly Diluted Conditions on a Light Duty Diesel Engine with Focus on Injection Strategy

2015-09-06
2015-24-2439
In the last decades, emission legislation on pollutant emissions generated by road transportation sector has become the main driving force for internal combustion engine development. Approximately 20% of worldwide emissions of carbon dioxide from fuel combustion come from the transportation sector, and road vehicles contribute up to 80% of those emissions [1]. Light-duty methane gas engines are usually spark-ignited due to similar combustion characteristics for methane gas and gasoline. Since spark ignition requires a low compression ratio to avoid knock problems, gas engines have lower efficiency than diesel engines. A combustion concept that has been successfully applied on large stationary engines and to some extent on heavy-duty engines is dual-fuel combustion, where a compression-ignited diesel pilot injection is used to ignite a homogeneous charge of methane gas and air.
Technical Paper

Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2015-04-14
2015-01-0867
It has previously been shown by the authors that the pre-chamber ignition technique operating with fuel-rich pre-chamber combustion strategy is a very effective means of extending the lean limit of combustion with excess air in heavy duty natural gas engines in order to improve indicated efficiency and reduce emissions. This article presents a study of the influence of pre-chamber volume and nozzle diameter on the resultant ignition characteristics. The two parameters varied are the ratio of pre-chamber volume to engine's clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber capable of spark ignition, fuel injection and pressure measurement.
Technical Paper

Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review

2008-10-06
2008-01-2383
Current developments in fuels and emissions regulations are resulting in increasingly severe operating environment for the injection system. Formation of deposits within the holes of the injector nozzle or on the outside of the injector tip may have an adverse effect on overall system performance. This paper provides a critical review of the current understanding of the main factors affecting deposit formation. Two main types of engine test cycles, which attempt to simulate field conditions, are described in the literature. The first type involves cycling between high and low load. The second involves steady state operation at constant speed either at medium or high load. A number of influences on the creation of deposits are identified. This includes fouling through thermal condensation and cracking reactions at nozzle temperatures of around 300°C. Also the design of the injector holes is an influence, because it can influence cavitation.
Journal Article

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

2008-06-23
2008-01-1722
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio for a heavy duty 6-cylinder port injected natural gas engine. A closed loop load control is also applied for keeping the load at a constant level when using EGR.
Technical Paper

Closed-Loop Combustion Control Using Ion-current Signals in a 6-Cylinder Port-Injected Natural-gas Engine

2008-10-06
2008-01-2453
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio. Furthermore, ion-current based dilution limit control is applied on the EGR in order to maximize EGR rate as long as combustion stability is preserved.
Journal Article

Characterization of the Tau Parallel Kinematic Machine for Aerospace Application

2009-11-10
2009-01-3222
A consortium of interested parties has conducted an experimental characterization of two Tau parallel kinematic machines which were built as a part of the EU-funded project, SMErobot1. Characteristics such as machine stiffness, work envelope, repeatability and accuracy were considered. This paper will present a brief history of the Tau parallel machine, the results of this testing and some comment on prospective application to the aerospace industry.
Technical Paper

CFD Simulations of Pre-Chamber Jets' Mixing Characteristics in a Heavy Duty Natural Gas Engine

2015-09-01
2015-01-1890
The effect of pre-chamber volume and nozzle diameter on performance of pre-chamber ignition device in a heavy duty natural gas engine has previously been studied by the authors. From the analysis of recorded pre- and main chamber pressure traces, it was observed that a pre-chamber with a larger volume reduced flame development angle and combustion duration while at a given pre-chamber volume, smaller nozzle diameters provided better ignition in the main chamber. The structure of pre-chamber jet and its mixing characteristics with the main chamber charge are believed to play a vital role, and hence CFD simulations are performed to study the fluid dynamic aspects of interaction between the pre-chamber jet and main chamber charge during the period of flame development angle, i.e. before main chamber ignition. It has been observed that jets from a larger pre-chamber penetrates through the main chamber faster due to higher momentum and generates turbulence in the main chamber earlier.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
X