Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Journal Article

Ethanol Flex-fuel Engine Improvements with Exhaust Gas Recirculation and Hydrogen Enrichment

2009-04-20
2009-01-0140
An investigation was performed to identify the benefits of cooled exhaust gas recirculation (EGR) when applied to a potential ethanol flexible fuelled vehicle (eFFV) engine. The fuels investigated in this study represented the range a flex-fuel engine may be exposed to in the United States; from 85% ethanol/gasoline blend (E85) to regular gasoline. The test engine was a 2.0-L in-line 4 cylinder that was turbocharged and port fuel injected (PFI). Ethanol blended fuels, including E85, have a higher octane rating and produce lower exhaust temperatures compared to gasoline. EGR has also been shown to decrease engine knock tendency and decrease exhaust temperatures. A natural progression was to take advantage of the superior combustion characteristics of E85 (i.e. increase compression ratio), and then employ EGR to maintain performance with gasoline. When EGR alone could not provide the necessary knock margin, hydrogen (H2) was added to simulate an onboard fuel reformer.
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Journal Article

Boosting Simulation of High Efficiency Alternative Combustion Mode Engines

2011-04-12
2011-01-0358
Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Journal Article

A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines

2011-04-12
2011-01-0661
A novel continuous inductive discharge ignition system has been developed that allows for variable duration ignition events in SI engines. The system uses a dual-coil design, where two coils are connected by a diode, combined with the multi-striking coil concept, to generate a continuous current flow through the spark plug. The current level and duration can be regulated by controlling the number of re-strikes that each coil performs or the energy density the primary coils are charged to. Compared to other extended duration systems, this system allows for fairly high current levels during the entire discharge event while avoiding the extremely high discharge levels associated with other, shorter duration, high energy ignition systems (e.g. the plasma jet [ 1 , 2 ], railplug [ 3 ] or laser ignition systems [ 4 , 5 , 6 , 7 , 8 ].
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
X