Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

the use of Bench Wear tests in Materials Development

1959-01-01
590065
TWO TYPES of bench wear tests employed by the General Motors Research Laboratories are described, and examples are given to illustrate the application of the tests to material development problems. It is shown that correlation of a bench test with service may be achieved even when the laboratory test conditions do not appear to duplicate service conditions exactly. It is postulated that this behaviour is related to the formation of certain types of surface films during the wearing process. Some preliminary results are given of a study of the influence of lubricant type and material composition on the formation of anti-wear films.
Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

the effect of Residual Stresses Induced by Strain-Peening upon Fatigue Strength

1960-01-01
600018
THE PURPOSE of this experiment was to determine the role of residual stresses in fatigue strength independent of other factors usually involved when residual stresses are introduced. It consisted of an investigation of the influence of residual stresses introduced by shotpeening on the fatigue strength of steel (Rockwell C hardness 48) in unidirectional bending. Residual stresses were varied by peening under various conditions of applied strain. This process introduced substantially the same amount and kind of surface cold working with residual stresses varying over a wide range of values. It was found that shotpeening of steel of this hardness is beneficial primarily because of the nature of the macro-residual-stresses introduced by the process. There is no gain attributable to “strain-hardening” for this material. An effort was made to explain the results on the basis of three failure criteria: distortion energy, maximum shear stress, and maximum stress.*
Technical Paper

some metallurgical aspects of … Pontiac V-8 Engine Pearlitic Malleable Iron Crankshaft

1958-01-01
580013
PEARLITIC malleable iron crankshafts are being used in the new Pontiac engine as a result of recent developments. This paper discusses the physical properties of pearlitic malleable iron such as elastic modulus, fatigue endurance, and tensile strength. According to the author, definite machining economies result from using pearlitic malleable iron crankshafts.
Technical Paper

a new look at High Compression Engines

1959-01-01
590015
THE automotive and petroleum industries have been concerned for many years with the mutual problem of improving the thermal efficiency of gasoline engines. Great progress in refining technology, as well as advances in engine design in recent years, have made it desirable to take a new look at high-compression engines. This paper describes an investigation of the effect of compression ratio on engine efficiency over a range of compression ratios from 9/1 to 25/1. The results show that the thermal efficiency of the multicylinder engines used in this study peaked at a compression ratio of 17/1. The decrease in thermal efficiency at higher compression ratios is due primarily to delay in the completion of the combustion process. This paper received the 1958 Horning Memorial Award.
Technical Paper

Year in Review: Progress towards Decarbonizing Transport and Near-Zero Emissions

2023-04-11
2023-01-0396
As in the past several years, we provide here an overview of recent major regulatory and technological changes for reducing emissions from the transport and off-road sector. In the past, this review was focused mostly on improvement in engine efficiency and tailpipe emissions of criteria pollutants. However, starting last year [1] we have increased the scope to broadly address the increased focus on greenhouse gas emissions and the emergence of various non-conventional fuel pathways to achieve the various decarbonization goals. There are two broad themes that are emerging, and which we describe here. Firstly, that we are approaching the implementation of the last of the major regulations on criteria pollutant emissions from cars and trucks, led by Europe, through Euro 7 standards and US, through multi-pollutant standards for light- and heavy-duty vehicles.
Technical Paper

Wind Tunnel-to-Road Aerodynamic Drag Correlation

1988-02-01
880250
A comprehensive test program was conducted to correlate aerodynamic drag measurements from the General Motors Aerodynamics Laboratory with coastdown results. An improved method of coastdown testing was used to minimize the sources of error in determining aerodynamic drag. Several vehicles were tested, covering a large range of aerodynamic drag values, representative of current and future production vehicles. Wind tunnel and coastdown results were determined to be in good agreement, with an average drag coefficient difference of only. 008 (2%).
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Visual Aiming of European and U.S. Low-Beam Headlamps

1992-02-01
920814
This study evaluated the effect of the sharpness of the cutoff (the transition between the lighter and darker portions of the beam) of low-beam headlamps on visual vertical aiming. Out of ten lamps tested, seven had a U.S.-type beam pattern and three had a European-type beam pattern. Twenty younger and middle-aged subjects of both sexes, along with an experienced lamp aimer, were asked to adjust the vertical aim of the lamps in such a way that the cutoff of the beam was coincident with a horizontal line on a vertical surface. The subjects were instructed to make the alignment using the illumination gradient to the right of vertical for the U.S.-type lamps and to the left of vertical for the European-type lamps. Each person aimed each lamp ten times. There are two main results. First, the location of the perceived cutoff was generally near the location of the maximum contrast between adjacent vertical parts of the beam pattern.
Technical Paper

Viscosity Effects on Engine Wear Under High-Temperature, High-Speed Conditions

1978-02-01
780982
Four multigrade engine oils, containing the same base oil plus SE additive package but VI improvers of differing shear stability, were evaluated in 80 000 km of high-speed, high-temperature vehicle service. Bearing, piston ring and valve guide wear, as well as oil consumption, oil filter plugging and engine cleanliness were all worse for the engines operated on the low-shear stability oils. The wear differences were traced to differences in high-shear-rate viscosity, while the cleanliness, filter plugging and oil consumption differences occurred because of excessive wear or polymer shear degradation. These results suggest that engine oil viscosity should be specified under high-shear-rate conditions.
Technical Paper

Vehicular Radar Speedometer

1973-02-01
730125
Certain problems associated with conventional vehicular speed sensing, such as wheel slip, wheel lock, and variable rolling radius, can be alleviated by employing microwave speed sensing. It is expected that true speed sensing will augment a number of automotive and other ground transportation applications. An experimental, two-horn, 55 GHz continuous wave radar speedometer designed to measure true ground speed in the presence of vehicular perturbations is described; the system has an ultimate design frequency of 60 GHz. An Impatt diode, solid-state transmitter was incorporated in this design because of its inherent advantages. The RF portion of the transmitter-receiver unit, including the dipole feed, is housed on a single microstrip circuit on an alumina substrate 1/2 X 1/4 in (12.7 X 6.35 mm). Vertically polarized beams incident at angles of 35 deg with respect to the horizontal system were chosen as a design compromise.
Journal Article

Vehicular Emissions in Review

2016-04-05
2016-01-0919
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2015. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe is continuing developments towards real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
Journal Article

Vehicular Emissions in Review

2012-04-16
2012-01-0368
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2011. First, the paper covers the key regulatory developments in the field, including proposed criteria pollutant tightening in California; and in Europe, the newly proposed PN (particle number) regulation for direct injection gasoline engines, test cycle development, and in-use testing discussions. The proposed US LD (light-duty) greenhouse gas (GHG) regulation for 2017-25 is reviewed, as well as the finalized, first-ever, US HD (heavy-duty) GHG rule for 2014-17. The paper then gives a brief, high-level overview of key emissions developments in LD and HD engine technology, covering both gasoline and diesel. Emissions challenges include lean NOx remediation for diesel and lean-burn gasoline to meet both the emerging NOx and GHG regulations.
Journal Article

Vehicular Emissions in Review

2014-04-01
2014-01-1491
The review paper summarizes major developments in vehicular emissions regulations and technologies in 2013. First, the paper covers the key regulatory developments in the field, including proposed light-duty (LD) criteria pollutant tightening in the US; and in Europe, the continuing developments towards real-world driving emissions (RDE) standards. Significant shifts are occurring in China and India in addressing their severe air quality problems. The paper then gives a brief, high-level overview of key developments in fuels. Projections are that we are in the early stages of oil supply stability, which could stabilize fuel prices. LD and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are or will soon be demonstrating 50% brake thermal efficiency using common approaches.
Technical Paper

Vehicle Underbody Thermal Simulation Using Computational Fluid Dynamics

1999-03-01
1999-01-0579
This study was initiated to evaluate the thermal characteristics of a vehicle underbody using math-based computational fluid dynamics (CFD) simulation based on 3-D configuration. Simulations without heat shields were carried out for different vehicle operating conditions which placed several areas at risk of exceeding their thermal design limits. Subsequently, simulations with several heat shield designs were performed. Results show that areas at risk without shields are well within thermal design limits when shielded. Part of the CFD simulation results were compared with experimental data, with reasonable correlation. The CFD approach can provide useful design information in a very short time frame.
Technical Paper

Vehicle Dynamics Synthesis Techniques for the Integration of Chassis Systems in Total Vehicle Design

1992-09-01
922104
A practical methodology is presented for the synthesis of Chassis Systems and their integration into a vehicle design to achieve a specified vehicle dynamic performance. By focusing on the fundamental performance requirements of gain, response time, and stability in midrange handling and the higher level design parameters of front and rear cornering compliance it is possible to find optimum values for these design parameters. The balancing of these higher level design parameters, in the context of overall vehicle performance, determines primary system requirements for the front suspension, rear suspension, tires, and steering system which may in turn be met by a variety of specific hardware designs.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Vehicle Crashworthiness Analysis Using Numerical Methods and Experiments

1992-06-01
921075
Past studies have shown the applicability of advanced numerical methods for crashworthiness simulation. Lumped parameter (LP) modeling and finite element (FE) modeling have been demonstrated as two useful methodologies for achieving this endeavor. Experimental tests and analytical modeling using LP and FE techniques were performed on an experimental vehicle in order to evaluate the compatibility and interrelationship of the two numerical methods for crashworthiness simulation. The objective of the numerical analysis was to simulate the vehicle crashworthiness in a 0 degree, 48.6 KPH frontal impact. Additionally, a single commercial software, LS-DYNA3D, was used for both the LP and FE analysis.
X